BEDIENUNGSANLEITUNG

C-Digital

Modelleisenbahn - Steuerung

Benutzerhandbuch

Okt 2003/SW33

1 Vorbemerkungen 2 Kurzanleitung für sofortigen Fahrbetrieb 4 3 Verdrahtung 3.1 Stromversorgung 5 3.2 Verdrahtung der Gleisanlage (Zweileitersystem) 6 Das Blockstellenmodul 7 3.3 3.4 Verdrahtungsvariante Dreileitersystem 8 Anschließen der Handregler 9 3.5 3.6 Anschließen des Boosters 10 3.7 Verdrahtung größerer Anlagen mit Kabel 11 4 Inbetriebnahme Die Zentrale C-Digital 14 4.1 4.2 Der Handregler "Digital-Control" 14 4.3 Umstellen auf Dreileitersystem 15 Festlegen der Lokadresse 4.4 16 4.5 Lok-Funktionstest 16 Funktionen des Boosters 17 4.6 5 Aktivieren von Leistungsmerkmalen 5.1 Standard 18 5.2 Rangierbetrieb 18 5.3 Doppeltraktion, Doppeltraktion invers 19 Automatikfahrt 20 5.4 Zusatzgeräte, Funktionen F1 und F2 20 5.5 Grundeinstellungen am Lokdecoder 21 5.6 5.7 Nothalt/START 23 6 Einbau des Lok-Decoders Beschreibung des Decoders "Professionell" 23 6.1 6.2 Einbauhinweise 24 6.3 Stromversorgung und Motoranschluß 25 Anschluß der Loklampen 26 6.4 6.5 Anschluß von Zusatzgeräten 27 6.6 Beschreibung des Lokdecoders "Economy" 27 Anschluß der Lokdecoder am NEM-Stecker 29 6.7 Beschreibung des Lokdecoders für Spurweite N (in Vorbereitung) 6.8 30 7 **Technische Daten** 7.1 Zusammenfassung der Leistungsmerkmale 31 7.2 Anschluß- und Leistungsdaten 32 8 Stichwortverzeichnis 34 9 35 **Anhang** 9.1 Parameter 2 Einstellung 9.2 Lok-Funktionstest und Fehlertabelle 9.3 Tabellen zum Notieren der Grundeinstellungen der Loks Verdrahtungsschemen Decodereinbau 9.4 9.5 Diagramme für Kabel und Anschlußlängen

1 Vorbemerkungen

Die Modelleisenbahnsteuerung C-Digital ermöglicht einen unabhängigen Zugbetrieb, bei dem jede Lok über ihre individuelle Lokadresse eindeutig an jeder Stelle der Gleisanlage gesteuert werden kann. Anhalteabschnitte vor Signalen oder in Blockstellen können mit überschaubarem Aufwand ins System integriert werden. In jede Lok wird ein Decoder eingebaut, der den Motor, die Lampen und zwei weitere Geräte steuern kann. Die Loks können Signalstellungen erkennen, um automatisch anzuhalten oder wieder loszufahren. Für jede Lok lässt sich der Anhalteweg individuell einstellen, damit man einerseits ein möglichst naturgetreues Abbremsen simulieren und andererseits das sichere Anhalten im vorgesehenen Anhalteabschnitt gewährleisten kann. Somit kann das System den Gegebenheiten einer bestehenden Gleisanlage angepasst werden. Auch die Fahrtrichtung jeder Lok wird ausgewertet, was ein Durchfahren roter Signale in Gegenfahrtrichtung ermöglicht.

An der Entwicklung von C-Digital waren neben den technischen Experten zwei Hobbyeisenbahner und drei eisenbahnbegeisterte Kinder aktiv beteiligt. Sie waren ausschlaggebend für die Gestaltung des Handreglers und der technischen Finessen. Während intensiver Spielphasen äußerten sie immer wieder Wünsche, die Zug um Zug realisiert wurden. So lassen sich alle Leistungsmerkmale bequem, ohne aufwendige Prozeduren, direkt von jedem Handregler "Digital-Control" aus für die adressierte Lok einstellen oder beliebig oft ändern. Die Anfahr- oder Bremsverzögerung kann eingestellt, Rangierfahrten unternommen oder Doppeltraktionen gefahren werden. Ein einfacher Tastendruck versetzt die Lok in automatische Weiterfahrt, und der Handregler ist wieder frei zum Steuern einer anderen Lok.

Zum System C-Digital gehören ein Netztrafo (Best.Nr. 21 27 28), die Zentrale (Nr. 21 27 64), der Handregler "Digital-Control" (Nr. 21 27 29), der Lokdecoder "Professionell" (Nr. 21 27 40) oder "Economy" (Nr. 21 27 41), ggf. Blockstellenmodule (Nr. 21 27 17) und der Booster (Nr. 21 27 76) für den Betrieb größerer Anlagen.

Weitere Bauteile, die Verwendung finden, sind:

Spule 47uH (Nr. 53 53 97) zum Betrieb anderer Geräte am Gleisstrom (Abschnitt 4)

Diode 1N4002 (Nr. 16 22 21) bei Wechselstrommotoren (Abschnitt 6.3) und zur Vorschaltung UZ oder **GUZ** (Abschnitt 3.3)

Kabel Klingelschlauchleitung 6 x 0,8 (Nr. 60 61 03) zur Verdrahtung der Gleisspannungen COM, STR, UZ und GUZ (Abschnitt 3.7)

Hinweis:

Das System C-Digital ist baugleich mit dem System Conrad-Digital. Die Komponenten von Conrad-Digital sind mit denen von C-Digital beliebig austauschbar und umgekehrt.

Conrad Elektronik (Stand Oktober 2003): Lokdecoder Professionell und Economy

Netztrafo 18V, 50W, Elektronikbauteile

Fa. H-Tronic: Lokdecoder Professionell Economy Zentrale C-Digital, Booster C-Digital

> Handregler C-Digital Blockstellenmodul

Netztrafo 18V, 50W

Diode 1N4002, Spule 47uH Klingelschlauchleitung

2 Kurzanleitung für sofortigen Fahrbetrieb

Um möglichst schnell den Fahrbetrieb einer Lok mit eingebautem Decoder aufnehmen zu können, gehen Sie wie anschließend beschrieben vor. Für eine Nutzung aller besonderen Finessen von C-Digital ist jedoch das Verdrahten der Anlage gemäß Kapitel 3 erforderlich. In dem Fall können Sie dieses Kapitel überspringen.

Der Einbau der Lokdecoder sollte gründlich vorbereitet und sorgfältig durchgeführt werden. Entsprechende Hinweise dazu finden Sie im Abschnitt 6.

An der steckbaren Zweifachklemme AC der Zentrale wird der Netztrafo 18V, 50W angeschlossen. Die Gleisanlage erhält ihren Strom aus der fünfpoligen Steckklemme. Verwenden Sie dazu eine der beiden Klemmen COM und die Klemme STR zur Verbindung mit der/einer Stromanschlußstelle am Gleis (Bild 3.1.1a). Bedenken Sie bitte, dass auch voneinander isolierte Streckenteile verbunden werden, sonst ist ein Durchfahren des Zuges natürlich nicht möglich. Um einen guten Stromfluss zu erhalten, ist es ohnehin zweckmäßig, an mehreren Stellen der Gleisanlage zusätzlich Stromanschlüsse vorzusehen.

Gleistrennstellen vor Signalen oder Blockstellen, bei denen durch Stromabschalten des Gleises die Lok zum Stehen gebracht wird, können unverändert weiterbetrieben werden. Falls Sie später die Vorzüge von C-Digital mit automatischem, vorbildgerechtem Abbremsen und langsamem Wiederanfahren nutzen wollen, können Sie die Anlagen-Verdrahtung gemäß Kapitel 3 vornehmen.

Achtung!

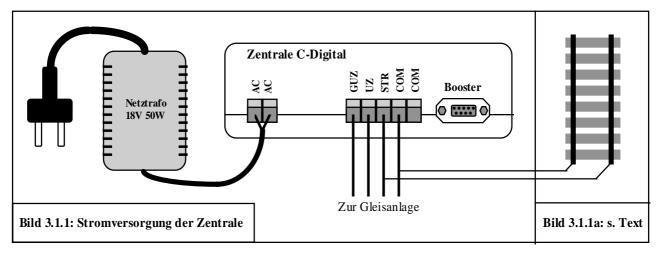
Bevor Sie den Strom einschalten, versichern Sie sich bitte, dass keine konventionell betriebene Lok (ohne eingebauten Decoder) auf dem Gleis steht, denn diese würde beim Einschalten der Anlage unkontrollierbar, sofort mit maximaler Geschwindigkeit losfahren.

Schalten Sie jetzt den Strom ein. Die grüne Lampe an der Zentrale leuchtet und das Gleis führt etwa 14 bis 15V Gleichspannung. Die eingebauten Lampen in den Waggons leuchten. Jetzt kann der erste Handregler "Digital-Control" an einer der sechs Buchsen der Zentrale angesteckt werden, eingestellt auf Betriebsart **Standard**. Die Zahl **0** blinkt links und signalisiert, dass die Handreglernummer eingestellt werden muss. Sie können mit den Tasten **Up** und **Down** am Handregler eine beliebige Zahl zwischen **1** und **6** einstellen und diese dann durch Betätigen der Taste **F2** im Handregler dauerhaft speichern. Falls nach dem erstmaligen Einstecken links keine **0** blinkt, wurde bereits werkseitig die **1** als Handregleradresse eingestellt. Wie die Handregleradresse zu ändern ist, lesen Sie bitte im Kapitel 4.2 nach. Stecken Sie jetzt ggf. den nächsten Handregler an und gehen Sie wie beim ersten vor, wobei sie die nächste Adresse (z. B. **2**) vergeben. Beachten Sie bitte, dass nicht zwei Handregler die gleiche Nummer gespeichert haben dürfen, sonst überlappen sich deren Steuerbefehle und sie erzeugen Fehlfunktionen. Es empfiehlt sich, die eingestellte Handreglernummer an der Unterseite mittels Aufkleber zu vermerken.

Stellen Sie nun die <u>erste</u> Lok mit eingebautem C-Digital-Lokdecoder aufs Gleis. Alle Decoder haben bei der Erstinbetriebnahme die Adresse 61. Wenn Sie diese am Handregler in der Betriebsart **Standard** mit den Tasten **UP** und **DOWN** einstellen und mit der Taste **Quittung** quittieren, können Sie mit der Lok fahren. Nach dem ersten kurzen Fahrtest sollten Sie bei dieser Lok gleich ihre endgültige Adresse zwischen 1 und 60 einstellen, damit die 61 wieder frei ist und die Erstinbetriebnahme der nächsten Lok mit Decoderadresse 61 erfolgen kann. Dazu muss der obere Drehschalter auf **Lok-adresse ändern** stehen. Sie sehen rechts am Display des Handreglers die bisherige und links

blinkt die neue Lokadresse. Mit den Tasten **Up/Down** wird die neue Lokadresse eingestellt und **quittiert**. In der Betriebsart **Standard** ist die Lok ab sofort unter ihrer neuen Adresse fahrbereit.

Auf diese Weise werden nacheinander weitere Loks für den Betrieb programmiert. Anschließend können Sie den Fahrbetrieb auf Ihrer Anlage aufnehmen.


Hinweis:

Die Datensignale des Fahrstromes dürfen nicht durch elektrische Geräte, die auch ihren Strom vom Gleis beziehen (z. B. ein Geräuschmodul), beeinflusst werden. Dies ist immer dann der Fall, wenn bei solch einem Gerät am Stromanschluß ein Kondensator oder ein Gleichrichter mit Kondensator eingebaut sind. Das können Sie u. a. selbst feststellen, wenn Sie diese Geräte an der Gleisspannung betreiben. Das Steuern der Loks vom Handregler aus wird dann schlecht oder gar nicht mehr funktionieren. Eine einfache Abhilfe schafft der Einbau einer kleinen Drosselspule von etwa 47uH (z. B. Best.Nr. 53 53 97) in eine der beiden Stromanschlußleitungen des störenden Gerätes.

3 Verdrahtung

3.1 Stromversorgung

Die Stromversorgung der gesamten Anlage erfolgt durch den externen 220V Netztrafo mit 18 V Wechselspannung am Ausgang und 50 Watt Leistung. Er wird an der Zentrale an den Klemmen AC angeschlossen. Zur besseren Handhabung können die Klemmen von der Zentrale abgesteckt werden. Ein Vertauschen der beiden Drähte spielt keine Rolle. Da über diese Drähte hohe Ströme fließen können, ist darauf zu achten, dass beim Einklemmen auch ein guter Kontakt hergestellt wird.

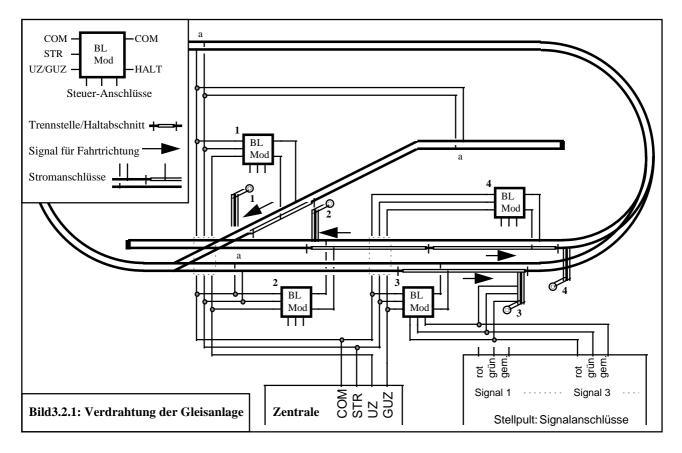
Die Zentrale beinhaltet die Stromerzeugung für die Gleisanlage, für die Handregler "Digital-Control", für die Steuerung der Informationsübertragung zu den Loks und auch ggf. für die Steuerung eines angeschlossenen Boosters zur Versorgung größerer Gleisanlagen.

Hinweis:

Bitte beachten Sie, dass der Netztrafo ausschließlich zum Anschluß AC an die Zentrale vorgesehen ist und nicht gleichzeitig als Stromquelle für weitere Verbraucher wie z.B. Lampen, Weichen, Booster od. ähnl. verwendet werden darf.

3.2 Verdrahtung der Gleisanlage (Zweileitersystem)

Die fünfpolige Steckklemme der Zentrale dient zum Anschließen der Gleisanlage. Es handelt sich dabei um die Klemmen **COM** (zweimal), **STR**, **UZ** und **GUZ**. Die Anschlüsse **COM** sind beide miteinander verbunden, also alternativ verwendbar und führen Minuspotenzial. Zur Verdrahtung größerer Anlagen wird die Verwendung von Kabeln anstelle einzelner Drähte empfohlen. Damit erreicht man eine optimale Übertragung der Datensignale in Anlagenteile, die relativ weit von der Zentrale entfernt sind (Abschnitt 3.7).


Die Gleisanlage muss elektrisch so aufgebaut sein, dass der eine der beiden Gleisstränge, z. B. der linke, über die gesamte Anlage, ohne elektrische Unterbrechung durchgehend verbunden ist. Dieser Gleisstrang ist mit einer der Klemmen **COM** zu verbinden.

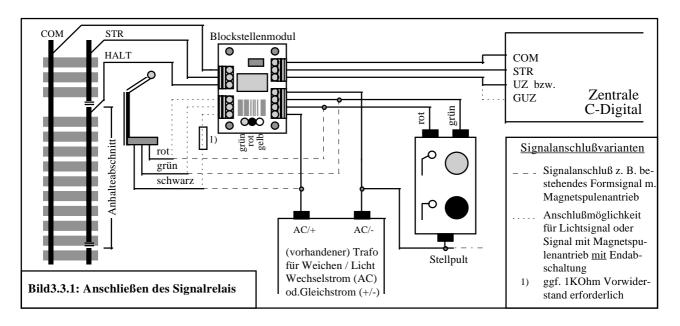
Beim anderen, rechten Gleisstrang, wird zwischen "Strecke" und "Anhalteabschnitt" unterschieden. Als "Strecke" werden alle Gleisstrecken, Weichen und Abstellgleise bezeichnet, in denen die Loks frei fahren können. "Anhalteabschnitte" befinden sich vor Signalen oder in Blockstellen, die man durch Gleistrennstellen isoliert und strommäßig abschalten kann, um eine Lok bei rotem Signal anhalten zu lassen. Zum Isolieren werden meist Schienensteckverbinder aus Kunststoff verwendet. Wichtig ist hier, dass Sie bei jedem Anhalteabschnitt die an **COM** angeschlossene Seite elektrisch verbunden lassen und nur jeweils die andere Seite des Schienenstranges isolieren.

Streckenteile reichen also vom Ende eines Anhalteabschnittes in Fahrtrichtung bis zum Beginn des nächsten und zwar genau bis zur nächsten Trennstelle. Jeweils am Ende eines Anhalteabschnittes steht i. d. R. das Streckensignal. Alle einzelnen Abschnitte "Strecke" werden elektrisch miteinander verbunden und an der Klemme **STR** angeschlossen. Wie Sie dem Bild 3.2.1 entnehmen können, wird die Gleisanlage an mehreren Stellen (a) mit Strom **COM** und **STR** gespeist, um überall eine gute Stromversorgung des Gleises zu gewährleisten.

Je nachdem, wie großzügig Sie Ihre Gleisanlage räumlich gestalten konnten, besteht die Möglichkeit, die Anhalteabschnitte nur kurz oder besser länger zu gestalten, um ein möglichst langsames Ausrollen der Züge vor einem roten Signal zu erreichen. Mindestens 40 cm sollten gewählt werden, damit ein sicheres Anhalten aus schneller Fahrt gewährleistet ist. Haben Sie diese Länge nicht zur Verfügung, sollte folglich nicht zu schnell gefahren werden. Bei ausreichendem Platz können Sie bereits mit 70 cm ein ansprechend langsames Anhalten realisieren. Naturgetreu wirkt es, wenn die Lok etwa 20 bis 40 cm vor dem roten Signal zum Stehen kommt. Der tatsächliche Anhalteweg jeder Lok ist von der Art des Lokmotors, des Getriebes und ggf. der Schwungmasse stark abhängig. Deshalb ist bei C-Digital die Möglichkeit gegeben, den Anhalteweg individuell in jeder Lok einzustellen (siehe Abschnitt 5.6). Sie sollten dazu, bei verschiedenen Geschwindigkeiten, einige Anhalteversuche durchführen. In Versuchen mit Loks verschiedener Hersteller wurden, aus voller Fahrt, maximale Anhalteweglängen zwischen 60 und 110 cm festgestellt.

Im Bild 3.2.1 sind Streckenteile und Anhalteabschnitte mit ihren Gleistrennstellen dargestellt. Die Streckenteile sind miteinander verbunden und an der Zentrale an **STR** angeschlossen. Für den Anschluß des durchgehenden Schienenstranges, bei diesem Gleisoval jeweils der auf dem Gleis innen liegende, wird eine der beiden Klemmen **COM** der Zentrale verwendet. Jeder Anhalteabschnitt erhält ein Blockstellenmodul bzw. Blockstellenmodul (Bl Mod). Der isolierte Gleisstrang wird an der Klemme **HALT** des jeweiligen Blockstellenmodul angeschlossen. Für **COM** und **STR** bestehen ebenfalls Klemmmöglichkeiten (s. Abschnitt 3.3).

Für alle Anhalteabschnitte müssen Sie Sich nun eine grundsätzliche Richtungssystematik zurechtlegen, da zwischen Verkehr und Gegenverkehr unterschieden werden muss. Bei Anlagen mit kreisähnlichem Rundumverkehr bietet sich an, von "Fahrt im Uhrzeigersinn (UZ)" und "Fahrt im Gegenuhrzeigersinn (GUZ)" zu sprechen. Die Richtungsfestlegung UZ/GUZ erkennen Sie im Bild 3.2.1 an den Pfeilen bei den Anhalteabschnitten. Davon abhängig erfolgt auch die Verdrahtung aller Blockstellenmodul zur Zentrale, und zwar für die eine Gruppe unter Verwendung der Klemme UZ der Zentrale (Blockstellenmodul 1 und 2 im Bild 3.2.1), für die andere Gruppe (entgegengesetzte Fahrtrichtung) unter Verwendung der Klemme GUZ (Blockstellenmodul 3 und 4). Die Blockstellenmodule werden wie die Streckensignale betrieben und gemäß Kapitel 3.3 angeschlossen. Bei der Verdrahtung größerer Anlagen wird die Verwendung von Kabeln anstelle einzelner Drähte empfohlen. Damit erreicht man eine übersichtliche Verdrahtungsstruktur und eine optimale Übertragung der Datensignale in Anlagenteile, die relativ weit von der Zentrale entfernt sind (Abschnitt 3.7).


3.3 Das Blockstellenmodul

Mit dem C-Digital-Blockstellenmodul (Bl Mod) werden Halteabschnitte vor Signalen und in Blockstellen gesteuert. Das Blockstellenmodul wird wie ein Signal mit Magnetantrieb oder wie ein Lichtsignal vom, i. d. R. vorhandenen, Stellpult aus betrieben. Es reagiert auf Gleichstrom oder Wechselstrom und wird ggf. gemeinsam mit dem Streckensignal angeschlossen. Bei Gleichstrom müssen Sie die Polarität (+/-) beachten.

Das Bild 3.3.1 stellt in zwei Varianten die Verdrahtung des Blockstellenmodul dar. Es erhält vom Trafo für die Weichensteuerung (AC oder +/-) seine Stromversorgung. Zur Steuerung wird es am selben Stellpult wie das Streckensignal angeschlossen. Durch das Betätigen der Stellpulttaster schaltet das Streckensignal und gleichzeitig das Blockstellenmodul auf rot oder grün. Der augenblickliche Zustand wird durch das Leuchten der entsprechenden Leuchtdiode auf dem Blockstellenmodul angezeigt. An der gelben Leuchtdiode erkennen Sie, wann ein Schaltvorgang stattfindet.

Neben dem Stellpultbetrieb lässt sich das Blockstellenmodul beispielsweise auch durch Reed-Kontakte automatisch von vorbeifahrenden Zügen schalten.

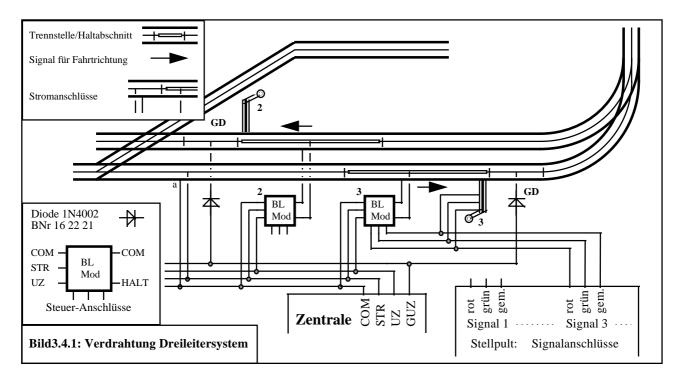
Die Aufgabe des Blockstellenmodul ist es, den Anhalteabschnitt am Gleis entweder mit Streckenstrom (STR) im Zustand "Freie Fahrt", oder mit Anhaltestrom (UZ bzw. GUZ) im Zustand "Halt" zu versorgen. Dazu werden von der Zentrale C-Digital die Leitungen COM, STR und UZ bzw. GUZ ans Blockstellenmodul herangeführt. Durch die Auswahl einer der beiden Anschlüsse UZ oder GUZ legen Sie fest, in welcher Fahrtrichtung ein Durchfahren trotz rotem Signal möglich ist. Vom Blockstellenmodul aus erfolgt dann die Verdrahtung der Gleise samt isoliertem Anhalteabschnitt.

Eine weitere Dreifachklemme auf dem Blockstellenmodul können Sie für den Anschluß eines Lichtsignals, eines Formsignals oder auch zum Schalten von Weichen nutzen. Die Verdrahtung erfolgt wie im Bild dargestellt (punktierte Linie). Sollte Ihr Lichtsignal mit Leuchtdioden betrieben werden, müssen Sie, falls nicht schon eingebaut, einen Vorwiderstand von ca. 1kOhm in die Leitung "schwarz" vorsehen. Magnetspulenangetriebene Signale oder Weichenmagnete benötigen für den Betrieb an dieser Klemme unbedingt eine eingebaute Endabschaltung, sonst würden die Magnetspulen durchschmoren.

Falls Sie kein Blockstellenmodul verwenden, müssen Sie das Streckensignal STR mittels eines Schaltkontaktes, der im Zustand "Freie Fahrt" geschlossen wird, an den isolierten Anhalteabschnitt (vgl. Leitung HALT im Bild 3.3.1) heranführen. Die Leitung UZ oder GUZ kann durch Vorschalten einer Diode 1N4002 (BestNr. 16 22 21), dauerhaft am Isolierten Haltabschnitt angeschlossen werden. Sie benötigen also pro Haltabschnitt einen freien Schaltkontakt und eine Diode. Die Diode verhindert, dass die Datensignale des Streckenstromes STR durch die UZ- oder GUZ-Signale beeinflusst werden (s. Bild 3.7.1, (d)). Bei verschiedenen Gleisherstellern können Gleisabschnitte durch Kontakte an den Weichenmagneten geschalten werden. Diese Kontakte können nur verwendet werden, wenn sie elektrisch von den Schienensträngen isoliert sind, oder wenn sie den passenden Schienenstrang betreffen. Der Schienenstrang, an den der Anschluß COM geführt ist, darf nicht verwendet sein.

Hinweis:

Sollte auf Ihrer Anlage die, zur Weichen- und Signalsteuerung bestehende Verdrahtung mit Gleichstrom, aber mit entgegengesetzter Polarität im Vergleich zur beschriebenen Anschaltung ausgeführt


sein, so können Sie das Blockstellenmodul passend umbauen. Dazu müssen die drei Leuchtdioden (LED rot, grün und gelb) sowie die beiden Dioden 1N4148 umgedreht, mit vertauschten Anschlüssen eingelötet werden. Auch die Funktionsweise des Relais kehrt sich um, sodass die rote LED anstelle der grünen und die grüne anstelle der roten eingebaut werden muss. Schließlich müssen Sie auch die Leitungen rot und grün vom Stellpult vertauschen.

3.4 Verdrahtungsvariante Dreileitersystem

Beim Dreileitersystem verwendet man neben den beiden Schienensträngen einen dritten Leiter in der Mitte der Gleise (Mittelleiter). Die Loks greifen den Fahrstrom über die Räder rechts und links und mittels eines Schleifers vom Mittelleiter ab. Das Umdrehen der Lok auf dem Gleis ist vom Decoder nicht erkennbar, da die Stromanschlüsse für den Fahrstrom immer in gleicher Weise durch Schleifer und Räder abgenommen werden. Die Einteilung **UZ** und **GUZ** wie beim Zweileitersystem im Abschnitt 3.2 beschrieben, kann hier nicht verwendet werden.

Um dennoch ein Überfahren roter Signale in Gegenrichtung zu ermöglichen, müssen die Anhalteabschnitte zusätzlich präpariert, und die Ausgänge der Zentrale in veränderter Weise betrieben werden. Dazu muss die Zentrale umgestellt und jeder Lokdecoder entsprechend eingestellt werden (siehe Abschnitte 4.3 und 5.6). Das Bild 3.4.1 zeigt analog zum Zweileitersystem einen Ausschnitt der Anlage aus dem Bild 3.2.1 als Dreileitersystem aufgebaut und verdrahtet. Dabei wird angenommen, dass die beiden Schienenstränge des Gleises elektrisch verbunden sind.

Um die Durchfahrt des Anhalteabschnittes bei Rot in der Gegenrichtung, also im Bild von rechts auf Signal 3 zufahrend, zu ermöglichen, wurde ein zusätzlicher, isolierter Gleisabschnitt **GD** eingebaut. Dieser Abschnitt ist mindestens 20 cm lang und schließt unmittelbar so an den Anhalteabschnitt an, dass ihn die Lok aus der Gegenfahrtrichtung vor dem Anhalteabschnitt passiert.

Beim Durchfahren des Abschnittes **GD** erhält der Decoder den Hinweis, dass der nächste Haltabschnitt durchfahren werden kann, solange sich die Fahrtrichtung der Lok nicht ändert. Nach dem Durchfahren sorgt dann die Dateninformation des folgenden Streckenabschnittes **STR** dafür, dass

der Hinweis zur Durchfahrt im Decoder wieder gelöscht wird. Deshalb muss zwischen zwei Anhalteabschnitten ein Streckenabschnitt **STR** von mindestens 30 cm Länge liegen.

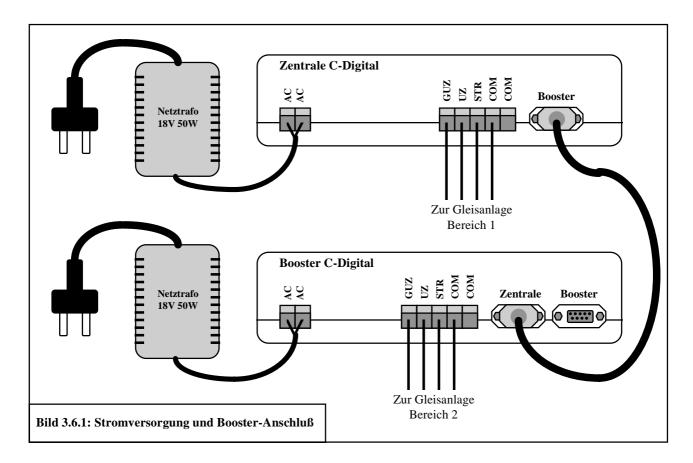
Die Anschlüsse der Zentrale führen im Modus Dreileitersystem an der Klemme UZ das Signal HALT und an der Klemme GUZ das Signal GD. Anders als beim Zweileitersystem werden hier die Anschlüsse UZ/GUZ <u>aller</u> Blockstellenmodule mit dem Anschluß UZ der Zentrale verbunden und alle Gleisabschnitte GD sind an der Klemme GUZ der Zentrale angeschlossen. Bei der Verdrahtung größerer Anlagen wird die Verwendung von Kabeln anstelle einzelner Drähte empfohlen. Damit erreicht man eine übersichtliche Verdrahtungsstruktur und eine optimale Übertragung der Datensignale in Anlagenteile, die relativ weit von der Zentrale entfernt sind (Abschnitt 3.7).

3.5 Anschließen der Handregler

Die Handregler "Digital-Control" werden an der Zentrale an den dafür vorgesehenen Buchsen angesteckt. Die Reihenfolge der Buchsen ist beliebig. Die Zentrale unterscheidet die Handregler mittels der im Handregler gespeicherten Nummer. Diese Nummer müssen Sie wie im Kapitel 4.2 beschrieben einmalig einstellen.

Über die Buchsen werden die Stromversorgung, die Leitung für die Tasten **Nothalt** und zwei Datenleitungen zum Handregler geführt.

Hinweis:


Das Ein- und Ausstecken eines Handreglers während des Betriebes kann zu Kurzstörungen des Datenstromes führen. Möglicherweise gelangen dann in Folge Fehlinformationen zu den Lokdecodern, die kurzzeitig unkontrollierte Reaktionen der Loks auslösen könnten, wie beispielsweise das ungewollte Beenden der Automatikfahrt einer Lok. Sie sollten demnach Handregler nur bei ausgeschalteter Anlage An- oder Abstecken.

3.6 Anschließen des Boosters

Die Leistung der Zentrale C-Digital ist für etwa sechs gleichzeitig fahrende Züge ausreichend. Beleuchtete Waggons verbrauchen zusätzlich Energie und schränken diese Anzahl ein. Mit dem Anschließen eines Boosters erreicht man eine Leistungserhöhung, sodass etwa doppelt so viele Züge gleichzeitig fahren können. Vor dem Anschließen des Boosters muss die Gleisanlage elektrisch in etwa zwei gleich große Teile getrennt werden. Beim Fahrbetrieb mit vielen Zügen soll sich die Stromlast etwa gleichmäßig auf die beiden Teile verteilen.

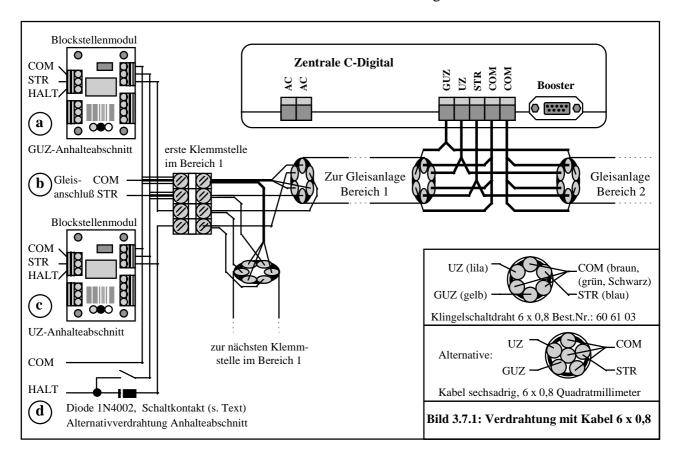
Wichtig:

Bitte Prüfen Sie, ob die beiden Anlagenteile auch wirklich komplett an beiden Schinensträngen getrennt sind (bei Dreileitersystem den Mittelleiter und beide Außenleiter trennen). Die Trennung ist Voraussetzung für ein dauerhaft sicheres Funktionieren der Stromversorgung aus Zentrale und Booster. Ein mehr oder weniger kurzzeitiges Überbrücken der Trennstellen, beispielsweise durch fahrende Lokräder, ist natürlich zulässig und führt nicht zu Beeinträchtigungen.

Bis auf die Buchsen für die Handregler enthält der Booster die gleichen Anschlüsse wie die Zentrale. Auch die Verdrahtung zur Gleisanlage findet entsprechend der Abschnitte 3.1 bis 3.4 genauso wie bei der Zentrale statt. Zur Stromversorgung des Boosters benötigt man einen separaten Netztransformator, der die Energie für den zweiten Anlagenteil liefert. Die Übertragung der Daten- und Steuersignale von der Zentrale zum Booster erfolgt durch ein neunpoliges Kabel mit Sub-D Stecker und Buchse (Bild 3.6.1).

Der Aufstellort des Boosters kann sowohl neben der Zentrale, als auch entsprechend der Länge des Verbindungskabels, entfernt davon sein.

An der Buchse Booster kann sowohl an der Zentrale, als auch an einem Booster mittels eines neunpoligen Sub-D-Steckers mit angelötetem Kabel am Pin 6 und 7 ein Taster als weitere Start-Taste zur Montage an einer abgesetzten Stelle der Anlage angeschlossen werden (durch Betätigung der Taste werden Pin 6 und 7 verbunden).


3.7 Verdrahtung größerer Anlagen mit Kabel

Modellbahnanlagen mit umfangreichen Gleisstrecken und Blockstellen, die in Spurweite H0 eine Größe von etwa vier Meter Länge überschreiten und auf denen etwa zehn Loks oder mehr betrieben werden, erfordern bereits in herkömmlicher Technik eine recht aufwendige Verdrahtung. Bei Conrad Digital entfällt zumindest der Kabelaufwand für die verschiedenen Stromkreise der einzelnen Fahrtrafos getrennter Strecken. Ein kleiner Mehraufwand entsteht jedoch durch das Verdrahten der Haltabschnitte an Blockstellen für Fahrverkehr in Uhrzeiger- und Gegenuhrzeigerrichtung (UZ, GUZ) wie in den Abschnitten 3.2 bis 3.4 beschrieben. Mit dem hier vorgestellten Verdrahtungsschema wird eine übersichtliche Struktur geschaffen und es erfüllt gleichzeitig die Voraussetzungen einer optimalen Übertragung der Datensignale zu den Lokdecodern.

Je länger die Leitungen für **COM**, **STR**, **UZ** und **GUZ** aus der Zentrale und aus dem Booster sind, umso größer ist die Dämpfung der Datensignale. Die geringste Dämpfung, also die größte Reichweite erhält man bei der Verwendung eines vier oder besser sechspoligen Kabels anstelle einzelner Drähte unterschiedlicher Längen.

Werden viele Decoder, also viele Loks auf einem mehrere Meter abgelegenen Anlagenteil betrieben, so kann eine zu große Dämpfung das zuverlässige Steuern der Loks beeinträchtigen. Deshalb wird die Verwendung eines preiswerten, handelüblichen Kabels 6 x 0,8 (= 6 Adern mit einem Querschnitt von 0,8 Quadratmillimetern) empfohlen. Man erreicht gegenüber einer losen Einzeldrahtverdrahtung eine Verbesserung um etwa den Faktor 3. Das bedeutet, dass dreimal so viele Lokdecoder sicher angesprochen oder dreifach größere Entfernungen überbrückt werden können. Die geringe Dämpfung der Datensignale ist beim Kabel darin begründet, dass für jeden Anschluß (STR, UZ oder GUZ) auch je eine eigene Leitung für COM vorgesehen wird. Man erhält damit eine optimale Signalverteilung längs des Kabels. Aus den Diagrammen in der Anlage 9.5 kann abgeschätzt werden, welche Kabel- oder Drahtlängen maximal möglich sind und wie viele Decoder dann noch sicher betrieben werden können. Bei der Planung großer Anlagen sollten diese Bedingungen berücksichtigt werden.

Im Bild 3.7.1 ist schematisch eine Anlagenverdrahtung unter Verwendung des sechsadrigen Kabels (Klingelschaltdraht Best.Nr.: 60 31 03) dargestellt. Ausgehend von der Zentrale wird die Anlage in zwei Richtungen durch getrennte Kabelstränge versorgt. Dazu wurde eine Anlage gedanklich in die Bereiche 1 und 2 aufgeteilt. Jeder Bereich sollte etwa gleich große Gleisstrecken und durchschnittlich eine ähnlich große Anzahl an Loks, soweit vorhersehbar, versorgen. Spätere Erweiterungen des Fuhrparks könnten aus Leistungsgründen einen Booster erfordern. Dieser kann durch Umverdrahten eines der beiden Kabel von der Zentrale zum Booster einen Anlagenbereich

versorgen und die Zentrale entlasten. Wie im Abschnitt 3.6 beschrieben, müssen dann auch die Gleisstrecken der beiden Bereiche elektrisch voneinander getrennt werden.

Verfolgen wir nun im Bild 3.7.1 das Kabel von der Zentrale in den Bereich 1. Das Kabel wird so an der Zentrale angeschlossen, dass im Kabelquerschnitt betrachtet je eine Signalleitung STR, UZ und GUZ neben einer COM-Leitung zu liegen kommt. So werden die niedrigsten Dämpfungswerte erzielt, wobei das Zusammenschalten der COM-Leitungen an der Zentrale oder an den Klemmstellen im weiteren Verlauf keine Beeinträchtigung mit sich bringt. Von der ersten Klemmstelle aus wird jetzt beispielhaft die Versorgung eines GUZ-Anhalteabschnittes (a) mittels Blockstellenmodul, ein Anschluß für Streckenabschnitte (b) und die Versorgung eines UZ-Anhalteabschnittes (c) ebenfalls mittels Blockstellenmodul realisiert. Am unteren Bildrand ist die Versorgung eines UZ-Anhalteabschnittes (d) ohne Blockstellenmodul unter Verwendung eines freien Schaltkontaktes und einer Schaltdiode abgebildet.

Ausgehend von der ersten Klemme wird das Kabel zur nächsten Klemmstelle im Bereich 1 geführt. Dort findet erneut die Verdrahtung von Strecken- und/oder Anhalteabschnitten analog wie im Beispiel der ersten Klemmstelle statt. Nach Bedarf wird von da aus das Kabel zur dritten, vierten, usw. Klemmstelle weitergeführt. Je nach Gestaltung der Anlage kann von einer Klemmstelle aus auch eine sternförmige Verkabelung zweckmäßig sein.

Unter Verwendung dieser Verdrahtungsart wurde erfolgreich eine Großanlage mittels einer Zentrale und zwei Boostern betrieben. Es wurden 18 Züge auf einer Streckenausdehnung von etwa 25m versorgt, wobei sich bis zu 12 Züge gleichzeitig in Fahrt befanden.

4 Inbetriebnahme

Vor der Erstinbetriebnahme sollten Sie abschließend nochmals die Verdrahtung überprüfen.

Achtung!

Bevor Sie den Strom einschalten, versichern Sie sich bitte, dass keine konventionell betriebene Lok (ohne eingebauten Decoder) auf dem Gleis steht, denn diese würde beim Einschalten der Anlage unkontrollierbar, sofort mit maximaler Geschwindigkeit losfahren.

Nach Einschalten des Stromes leuchtet die Lampe **EIN** an der Zentrale. Die Lampe **STOP**, die einen Nothaltzustand anzeigt, bleibt dunkel (siehe Abschnitt 5.7). Bei Aufleuchten dieser Lampe muss die Gleisstromversorgung durch betätigen der Taste Start an der Zentrale aktiviert werden. Unter Zuhilfenahme eines Lämpchens oder beleuchteten Wagens können Sie leicht feststellen, ob die Gleise mit Fahrstrom versorgt werden. Sollten die Lämpchen nicht leuchten, so schalten Sie sofort wieder ab, und überprüfen die Verdrahtung auf Unterbrechungen oder Kurzschlüsse.

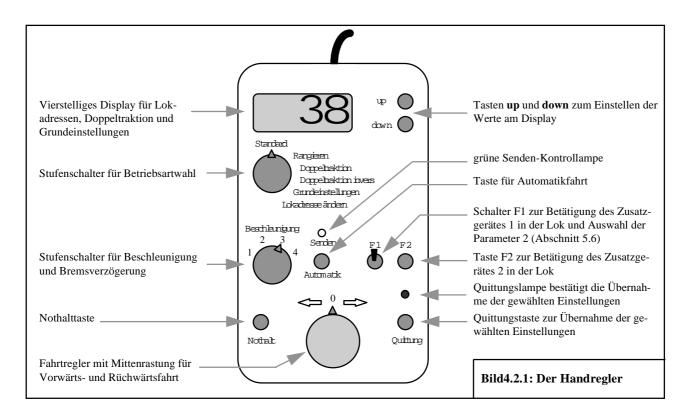
Hinweis:

Die Datensignale des Fahrstromes dürfen nicht durch elektrische Geräte, die auch ihren Strom vom Gleis beziehen (z. B. ein Geräuschgenerator), beeinflusst werden. Dies ist immer dann der Fall, wenn bei solch einem Gerät am Stromanschluß ein Kondensator oder ein Gleichrichter mit Kondensator eingebaut sind. Das können Sie u. a. selbst feststellen, wenn Sie diese Geräte an der Gleisspannung betreiben. Das Steuern der Loks vom Handregler aus wird dann schlecht oder gar nicht mehr funktionieren. Eine einfache Abhilfe schafft der Einbau einer kleinen Drosselspule von 47uH (z. B. 53 53 97) in eine der beiden Stromanschlußleitungen des störenden Gerätes.

4.1 Die Zentrale C-Digital

Nach dem Einschalten signalisiert die Lampe **EIN**, dass an den Anschlüssen **AC** der Zentrale Spannung anliegt und dass in der Zentrale die erforderlichen Betriebsspannungen erzeugt werden. Zu Beginn werden automatisch interne Prüfungen vorgenommen und anschließend an alle Lokdecoder ein Reset-Kommando gesendet. Eine frühere Automatikfahrt wird in den Lokdecodern beendet. Ab Herstellung Sept01 (blauer Farbstrich auf dem Decoder) wird die frühere Automatikfahrt nicht gelöscht, und die Lok fährt wieder entsprechend los. Die Zentrale prüft die Handreglerbuchsen und richtet für jeden angesteckten Handregler die Datenkommunikation ein. Dies erkennen Sie an den Handreglern am Flackern der Lampe **Senden**.

Während des Fahrbetriebes können Sie mit der **RESET/RESTORE** -Taste an alle Lokdecoder das Reset-Kommando senden. Darauf halten alle Loks an und Automatikfahrten werden je nach Decodersoftware unterbrochen oder ganz beendet. Loks, die per Handregler gesteuert werden, beginnen nach dem Loslassen der Taste, entsprechend der Einstellung des Fahrtreglers, wieder loszufahren. Eine unterbrochene Automatikfahrt kann durch kurzes Stromlosmachen der Lok wieder aktiviert werden. Kurzzeitiges Abschalten des Gleisstromes durch die Nothalttaste eines Handreglers und anschließendes Einschalten an der **START**-Taste der Zentrale bewirkt bei allen Loks mit unterbrochener Automatikfahrt ihre Reaktivierung.


Darüber hinaus ermöglicht Ihnen auch die **RESET/RESTORE** -Taste, die zuletzt aktivierten Automatikfahrten beim Einschalten der Anlage zu reaktivieren. In diesem Fall beginnen alle Loks die frühere Automatikfahrt von selbst wieder aufzunehmen; man spart sich ein lästiges Neueinstellen. Das Reaktivieren geschieht, wenn Sie während des Einschaltens der Zentrale die Taste für etwa zwei Sekunden gedrückt halten.

Nach einem erfolgten Nothalt (siehe Abschnitt 5.7) wird der Gleisstrom abgeschaltet, und die Lampe **STOP** leuchtet. Alle Züge bleiben stehen. Das Wiedereinschalten erfolgt durch die **START**-Taste. Die Nothaltfunktion verändert Automatikfahrteinstellungen nicht. Loks mit unterbrochener Automatikfahrt beginnen diese wieder aufzunehmen.

4.2 Der Handregler "Digital-Control,

Der Handregler "Digital-Control" beinhaltet alle Steuerfunktionen zum Fahren der Lok, sowie zum Verändern der festen Decodereinstellungen wie z.B. die Lokadresse. Die Tasten **Up** und **Down** dienen zum Einstellen der Zahlen auf dem Display. Mit der Taste **Quittung** werden Einstellungen bestätigt und im System übertragen. Am oberen Stufenschalter wird die Betriebsart, am unteren die Anfahrbeschleunigung eingestellt. Ausgehend von der Mittelstellung steuert man mit dem Fahrtregler die Geschwindigkeit und die Fahrtrichtung der Lok. Im Abschnitt 5 finden Sie dazu und zu den weiteren Schaltern und Tasten eine ausführliche Anleitung in Verbindung mit der Nutzung der möglichen Leistungsmerkmale.

Der Handregler wird an der Zentrale angesteckt und softwaremäßig mit seiner eigenen Nummer an der Zentrale "angemeldet". Dazu erscheint beim allerersten Anstecken an der Zentrale eine blinkende $\mathbf{0}$ in der linken Anzeige. Mit den **Up/Down**-Tasten können Sie jetzt die Handregler-Nummer (Handregler-Adresse) zwischen $\mathbf{1}$ und $\mathbf{6}$ einstellen. Durch Drücken der Taste $\mathbf{F2}$ wird die Zahl dauerhaft im Handregler gespeichert, damit die Zentrale bei künftigem Einschalten das Anmelden des Handreglers unter seiner Adresse automatisch durchführt. Falls nach dem erstmaligen Einstecken links keine $\mathbf{0}$ blinkt, wurde bereits werkseitig die $\mathbf{1}$ als Handregleradresse eingestellt.

Sobald die Zentrale den eingesteckten Handregler an seiner Nummer "erkennt", richtet sie für diesen die erforderlichen Speicherplätze zur Datenübertragung ein und startet den regelmäßigen Datenaustausch. Dies wird durch das Flackern der Lampe **Senden** am Handregler signalisiert.

Alle Handregler müssen unterschiedliche Nummern haben. Die Zentrale kann mehrfach vergebene Handreglernummern nicht verarbeiten. Auch bei mehrfach vergebenen Nummern findet zwischen den Handreglern und der Zentrale der Datenaustausch statt (**Senden** flackert). Die Daten sind jedoch unbrauchbar, da sie sich zwischen den identischen Handreglern laufend überlappen und unkontrolliert vermischen. Zum Überprüfen oder Ändern der eingestellten Nummer muss man während des Einsteckens des Handreglers die Quittungstaste gedrückt halten. Anschließend erscheint die gespeicherte Handreglegernummer im Display, und diese kann wie oben beschrieben erneut verändert werden. Ab Softwareversion 10/2002 kann die Handreglernummer durch gleichzeitiges Drücken der Tasten **Quittung** und **F2** angezeigt werden.

Eine Lok kann nicht gleichzeitig von zwei Handreglern aus gesteuert werden: Wenn Sie an einem Handregler eine Lok adressieren wollen, die bereits an einem anderen eingestellt und quittiert worden ist, ertönt bei Ihrem Handregler ein kurzer Aufmerksamkeitston, das Display beginnt zu blinken und die rote Quittungslampe bleibt dunkel.

4.3 Umstellen auf Dreileitersystem

Im Auslieferungszustand ist das System C-Digital auf Zweileitersystem eingestellt. Zur Umstellung auf das Dreileitersystem stecken Sie alle Anschlüsse von der Zentrale ab. Dann öffnen Sie sie durch Lösen der vier Schrauben an der Unterseite. Wenn Sie die Gehäuseoberseite so abnehmen, dass die sechs Steckbuchsen für die Handregler zu Ihnen zeigen, können Sie in der linken Hälfte, hinter den Steckbuchsen, einen kleinen Plastikstecker erkennen, der zwei von drei Kontaktstiften miteinander verbindet. Ziehen Sie diesen ab und stecken Sie ihn so ein, dass nun der mittlere Stift mit dem zuvor freien Stift links verbunden ist. Anschließend wird das Gehäuse wieder geschlossen, die Schrauben eingedreht und alle Anschlüsse wieder an der Zentrale angesteckt.

Der Ausgang **UZ** hat nun die Bedeutung **HALT**, und der Ausgang **GUZ** hat die Bedeutung Gegendurchfahrt (**GD**). Die Lokdecoder müssen Sie ebenfalls entsprechend einstellen, damit sie die neuen Signale **HALT** und **GD** korrekt erkennen (siehe Abschnitt 5.6).

4.4 Festlegen der Lokadressen

Neue Lokdecoder haben alle die Erstadresse 61. Diese sollte auf eine Adresse zwischen 1 und 60 geändert werden. Sie stellen am Handregler "Digital-Control" in der Betriebsart **Standard** die Adresse 61 ein (**Up/Down**-Tasten) und quittieren sie. Jetzt können Sie eine Lok mit neuem Decoder steuern. Zum Einstellen der gewünschten Adresse dieser Lok bringen Sie den Drehschalter in die Position **Lokadresse ändern**. Im Display erscheint rechts die bisherige Adresse, links blinkend kann die neue eingestellt werden. Nach Betätigen der Taste **Quittung** wird die neue Adresse zum Decoder übertragen und bleibt dort auch nach Stromausfall dauerhaft gespeichert.

Da jeder neue Lokdecoder die Adresse 61 hat, können Sie Loks mit neu eingebauten Decodern nur nacheinander auf die Gleisanlage stellen und programmieren, da sonst alle Einstellungen für die eine Lok auch in identischer Weise bei der/den anderen eingespeichert würden. Diese Tatsache können Sie aber auch absichtlich nutzen, wenn Sie zwei gleiche Loks ausschließlich in Doppeltraktion, also <u>immer</u> zusammengekuppelt, fahren wollen. Dadurch spart man eine Lokadresse ein. Für den Betrieb mit Blockstellen und Halteabschnitten empfehlen wir jedoch, je Lok unterschiedliche Anhalteweglängen einzustellen, denn die vordere Lok gerät immer als erste in die Anhalteabschnitte und beginnt damit früher zu bremsen. Dies kann bei der zweiten Lok durch das Einstellen der nächst kürzeren Anhalteweglänge etwas kompensiert werden (siehe Abschnitt 5.3 und 5.6).

Solange Lokadressen zur Verfügung stehen, können Sie jeder Lok von Doppeltraktionsgespannen ihre eigene Adresse geben. Doppeltraktionen lassen sich bequem durch das Eingeben der beiden Lokadressen am Handregler in der Betriebsart **Doppeltraktion** realisieren (siehe Abschnitt 5.3).

Die eingestellte Adresse einer Lok lässt sich jederzeit erneut ändern. Dazu adressieren Sie in der Betriebsart **Standard** die Lok mit ihrer derzeitigen Adresse und stellen auf **Lokadresse ändern**. Wie oben beschrieben können Sie jetzt links im Display die neue Lokadresse einstellen und quittieren.

4.5 Lok Funktionstest

Der Betriebsartenschalter am Handregler steht auf **Standard**. Im Display erscheint die adressierte Lok und die rote Quittungslampe leuchtet. Durch Drehen des Geschwindigkeitsreglers kann nun mit dieser Lok beliebig gefahren werden. Die Fahrtrichtung vor oder zurück wird durch Drehen nach links bzw. nach rechts bestimmt. Die Lok hält vor roten Signalen in den entsprechenden Gleisabschnitten automatisch an. Bei Umschalten auf grün fährt sie entsprechend der Stellung des Geschwindigkeitsreglers wieder an.

Das am Decoder angeschlossene Loklicht wechselt automatisch mit der Fahrtrichtung. Angeschlossene Zusatzgeräte wie z.B. Dampfgenerator oder Lokpfeife lassen sich mit den Schaltern **F1** und **F2** betätigen.Wird eine Lok vom Handregler nicht mehr angesprochen, schaltet sie nach einigen Sekunden in den Parkmodus mit abgeschalteten Loklampen und Zusatzgeräten. Das erreichen Sie, wenn Sie am selben Handregler eine andere Lok adressieren.

Sollten beim Funktionstest Probleme auftreten, können Sie mögliche Abhilfen im Kapitel 6, Decodereinbau und im Anhang nachschlagen.

Die Technik der Steuerung beruht auf der Übertragung hochfrequenter Datenimpulse. Um eine möglichst gute Datenübertragung zu gewährleisten, sollte man deshalb das Gleis nicht allzu sehr verschmutzen lassen. Spätestens wenn manche Loks ruckartig fahren und das Loklicht wiederholt zu Zucken beginnt ist eine Schienenreinigung oder die Reinigung der Lokräder erforderlich.

4.6 Funktionen des Boosters

Der Booster besitzt die gleichen Funktionen wie die Zentrale. Teils wird er von der Zentrale aus gesteuert, teils kann der Booster steuernd auf die Zentrale wirken.

Die **grüne Betriebslampe** zeigt an, dass der Booster mit Spannung vom Netztrafo versorgt wird. Sie leuchtet, solange an den AC-Klemmen die erforderliche Spannung von 18 bis 24 V anliegt.

Die **rote Betriebslampe** leuchtet nach Betätigung der Nothaltfunktion auf (s. Benutzerhandbuch, Abschnitt 5.7). Die ausgelöste Nothalt-Information erreicht den Booster über das Verbindungskabel von der Zentrale. Wie in der Zentrale wird auch im Booster der Gleisstrom abgeschalten.

Die **Start-Taste** am Booster besitzt die gleiche Funktion wie die an der Zentrale. Durch sie kann aus einem Nothaltzustand heraus der Strom für die Gleisanschlüsse wieder eingeschalten werden. Die Start-Tasten an der Zentrale und am Booster bewirken das Wiedereinschalten des Stromes sowohl an der Zentrale als auch am Booster.

An der neunpoligen **Buchse Booster** am Booster kann ein dritter Booster angeschlossen werden, sodass dann insgesamt die dreifache Leistung für den Betrieb sehr großer Anlagen mit etwa 15 gleichzeitig fahrenden Zügen zur Verfügung steht. Jede Buchse mit der Bezeichnung Booster ermöglicht den Anschluß einer oder mehrerer **Start-Tasten** wie oben beschrieben. Dazu benötigen Sie einen im Handel erhältlichen, neunpoligen Sub-D-Stecker, an dem Sie die zusätzliche Start-Taste an den Pins 6 und 7 anschließen. Bei gedrückter Taste werden Pin 6 und 7 miteinander verbunden, was nach einem Notstop das Wiedereinschalten des Gleisstromes bewirkt.

5 Aktivieren von Leistungsmerkmalen

5.1 Standard

In der Betriebsart **Standard** sind folgende Leistungsmerkmale möglich: Die Fahreigenschaft der Lok lässt sich mit dem Beschleunigungsschalter in vier Stufen einstellen. In der Lok angeschlossene Zusatzgeräte können mit dem Schalter **F1** und der Taste **F2** ein- oder ausgeschaltet werden. Durch das Drücken auf **Automatik** wird die Automatikfahrt aktiviert.

Zum Fahren mit einer anderen Lok stellen Sie mit den Tasten **Up/Down** deren Lokadresse ein. Die Adresse muss mit der Taste **Quittung** bestätigt werden, worauf die rote Quittungslampe leuchtet. Jetzt können Sie diese Lok steuern, die vorherige schaltet kurz darauf in den Parkmodus (siehe Abschnitt 4.4).

Mit dem Stufenschalter **Beschleunigung** wird das Anfahr- und Bremsverhalten der Lok in 4 Stufen eingestellt. Bei Stufe 1 fährt die Lok stark verzögert an und bremst stark verzögert ab. Bei Stufe 4, der größten Beschleunigung, reagiert die Lok sehr direkt auf die Bewegungen des Geschwindigkeitsreglers. Die Stellungen 2 und 3 sind entsprechend abgestuft.

5.2 Rangierbetrieb

Durch Umschalten auf **Rangieren** wird die Maximalgeschwindigkeit der Lok auf etwa 40% begrenzt. Der Geschwindigkeitsregler reagiert feinfühliger. **Achtung!** In dieser Betriebsart durchfährt die Lok alle auf Halt gestellten Gleisabschnitte (Signal auf rot) ohne automatisches Anhalten! Dies wird durch das Blinken im Display signalisiert. Der Vorteil liegt darin, dass Rangierfahrten beliebig durchgeführt werden können, ohne dass alle diversen, zu durchfahrenden Signale auf grün gestellt werden müssen. **Automatikfahrt** und **Doppeltraktion** sind bei Rangierbetrieb nicht möglich.

5.3 Doppeltraktion, Doppeltraktion invers

In Stellung **Doppeltraktion** erscheint im Display, auf den beiden vorderen Stellen blinkend, eine weitere Lokadresse. Diese kann mit **Up/Down** verändert und mit **Quittung** bestätigt werden. Die Quittungslampe leuchtet und die beiden Loks reagieren - erste Lokadresse hinten, zweite Lokadresse vorne auf dem Display - gemeinsam auf alle Betätigungen des Handreglers. Die Daten für Geschwindigkeit, Fahrtrichtung, Beschleunigungsstufe, F1, F2 und Automatik-Fahrt werden an beide Loks gleichzeitig gesendet.

Durch Zurückdrehen des Betriebsartenschalters auf **Rangieren** oder **Standard** wird die zweite Lok wieder abgeschaltet.

Es kann vorkommen, dass zwei Loks (beispielsweise zwei V218 Dieselloks) in Doppeltraktion betrieben werden sollen, diese jedoch bei Vorwärtsfahrt in entgegengesetzter Richtung auf dem Gleis stehen. Beide Loks, in Doppeltraktion gekuppelt, würden entweder aufeinander zu- oder voneinander wegfahren. Um in diesem Fall nicht eine Lok umdrehen zu müssen, verwenden Sie die Betriebsart **Doppeltraktion invers.** Die Fahrtrichtung der zweiten Lok wird dabei gegenüber der ersten jeweils umgedreht, alle anderen Einstellungen bleiben gleich.

Beim Einfahren eines Doppeltraktionsgespannes in einen Halteabschnitt beginnt die vordere Lok früher zu bremsen. Folglich muss die hintere den Bremsvorgang etwas schneller durchführen, damit beide Loks gleichzeitig zum Stehen kommen. Dies können Sie durch die Wahl geeigneter Bremsweglängen (siehe Abschnitt 5.6) näherungsweise erreichen. Bei zwei gleichen Loks beispielsweise, würde bei der hinteren der nächst kürzere Bremsweg eingestellt werden.

5.4 Automatikfahrt

Soll die Lok mit der eingestellten Geschwindigkeit automatisch, ohne Handregler, von selbst weiterfahren, so muss die Taste **Automatik** betätigt werden. Das Display beginnt zu blinken, die Automatikfahrt wird sofort zum Decoder übertragen und versetzt die Lok in eine unabhängige Weiterfahrt. Die Geschwindigkeit, die Fahrtrichtung und der Betriebszustand angeschlossener Zusatzgeräte F1 und F2 werden im Decoder gespeichert, sodass auch nach einer Stromunterbrechung auf dem Gleis die Automatikfahrt von selbst wieder aufgenommen wird.

Die Automatikfahrt wird beendet, wenn man per Handregler diese Lok adressiert. Gleiches geschieht gleichzeitig bei allen Loks durch Drücken der Taste **RESET** an der Zentrale oder beim Einschalten der Anlage. Das automatische Reaktivieren einer früheren Automatikfahrt ist möglich (siehe Abschnitt 4.1). Decoder mit jüngerer Software unterbrechen die Automatikfahrt nur. Das Reaktivieren ist hier durch Betätigen der Nothalt-Taste eines Handreglers und anschließend der **START**-Taste möglich oder wenn die Lok kurz vom Gleisstrom getrennt wird.

Bei **Doppeltraktion** ist die Automatikfahrt ebenso möglich. Dabei wirken alle Handreglereinstellungen gleichzeitig auf beide Loks. Zum Beenden der Automatikfahrt einer Doppeltraktion stellen Sie zunächst die erste Lok im **Standard**-Betrieb ein, wobei Sie den Geschwindigkeitsregler in die Position bringen, dass die Lok in etwa mit der bisherigen Geschwindigkeit weiterfährt. Anschließend auf **Doppeltraktion** bzw. **Doppeltraktion invers** umstellen und die zweite Lok adressieren. Ab sofort ist die Automatikfahrt beendet, und beide Loks werden vom Handregler aus gesteuert.

5.5 Zusatzgeräte, Funktionen F1 und F2

Mit dem Schalter **F1** kann ein, am Lokdecoder-Anschluß "Funktion 1" betriebenes Gerät, ein- oder ausgeschaltet werden. Das Gerät könnte beispielweise ein Dampfgenerator oder ein Geräuschmodul sein. Im Zustand "aus" zeigt der Schalter **F1** nach oben.

Mit der Taste **F2** kann ein, am Lokdecoder-Anschluß "Funktion 2" angeschaltetes Gerät, aktiviert werden. Dies könnte eine Lokpfeife sein, die ertönt, solange die Taste gedrückt ist. Wie im Abschnitt 5.6, Tastfunktion, beschrieben, kann durch Setzen dieser Grundeinstellung die Funktion der Taste geändert werden. Der Lokdecoder reagiert auf den Tastendruck nun so, dass der Ausgang F2 eingeschalten bleibt. Das Ausschalten erfolgt durch nochmaliges Drücken auf **F2**.

5.6 Grundeinstellungen am Lokdecoder

Bei jedem Lokdecoder können individuell folgende Grundeinstellungen vorgenommen werden:

- o Tastfunktion
- o Automatisches Pfeifen (bei Wiederanfahrt aus Halteabschnitten)
- o Motorschaltfrequenz 20 oder 40 Hz je nach Lok-Motor-Typ
- o Brems-/Anhalteweges in Halteabschnitten vor roten Signalen/Blockstellen
- o Elektrische Motorbremse
- o Verdrahtungsvarianten für Licht und Zusatzfunktionen
- o Zwei- oder Dreileitersystem
- o Zusatzfunktion1-Automatik (ab Softwarestand SW32)
- o Dauerlicht (ab Softwarestand SW32)

Diese Grundeinstellungen werden im Lokdecoder als Zahlenkombinationen dauerhaft gespeichert und bleiben auch nach Stromausfall erhalten. Sie sind in drei Bereiche eingeteilt: Parameter 2a, 2b und 2c. Schlagen Sie dazu den Anhang 9.1 "Parameter 2 Einstellung" auf.

Der Betriebsartenschalter wird auf **Grundeinstellungen** gestellt. Manche Bedienelemente des Handreglers bekommen dann vorübergehend andere Funktionen: So treffen Sie mit dem Schalter für die Zusatzfunktion **F1**, mit dem Beschleunigungsschalter und mit den **Up/Down** -Tasten die Parameterauswahl.

Hinweis:

Die durchgeführten Einstellungen 2a, 2b oder 2c werden jeweils erst nach dem Betätigen der Quittungstaste in ihrer Gesamtheit zum Decoder übertragen. Deshalb müssen, auch wenn später nur eine einzelne Einstellung geändert werden soll, alle anderen Einstellungen der entsprechenden Parametergruppe 2a, 2b oder 2c ebenfalls berücksichtigt, also wunschgemäß vorgenommen werden. Beim Einstellen der Parameter 2c werden die Parameter 2b automatisch zurückgesetzt (Ursprungswert 40). Deshalb muss nach der Einstellung der Parameter 2c bei Bedarf die Einstellung der Parameter 2b erneut vorgenommen werden. Es hat sich als zweckmäßig erweisen, sich die Grundeinstellungen jeder Lok in einer Einstellungstabelle (s. Anhang 9.3) zu notieren. Sollte unvorhergesehener weise ein Datenverlust auftreten, kann schnell und unkompliziert eine Decoderneuprogrammierung vorgenommen werden.

Als erstes werden die Einstellungen der Parameter 2c vorgenommen. Hier legen Sie fest, welches Gleissystem, Zwei- oder Dreileiter, vorliegt und in welcher Anschlußart die Loklampen betrieben werden. Dazu schalten Sie den Schalter F1 ein (nach unten). Das Display zeigt rechts die Lokadresse, die Zahl davor kann durch Up/Down zwischen 0 und 7 und die Zahl ganz links durch den Beschleunigungsschalter zwischen 4 und 7 eingestellt werden.

Suchen Sie sich die zwei zutreffenden Zeilen, eine in der oberen, eine in der unteren Hälfte aus der Tabelle bei Parameter 2c (Anhang 9.1) aus. Stellen Sie am Display die beiden vorderen Stellen dazu entsprechend ein und quittieren Sie mit der Taste **Quittung**. Die Einstellungen werden gemeinsam zum Lokdecoder übertragen und gespeichert. Mit der Übertragung der Parameter 2c werden im Decoder die Parameter 2b immer auf **40** (siehe Tabelle) zurückgesetzt, sodass nach 2c die Einstellung der Parameter 2b vorgenommen werden muss.

Der Decoderanschluß für **F2** reagiert normalerweise auf die Taste **F2** solange sie gedrückt ist. Bei aktivierter Tastfunktion bleibt der Anschluß nach dem Loslassen der Taste eingeschaltet. Nochmaliges Drücken schaltet wieder aus.

Automatik-Pfeifen (Anhang 9.1, Zeile 3, 7):

Hier können Sie, bei eingebauter Lokpfeife, automatisches Pfeifen aktivieren, sodass vor jeder Wiederanfahrt aus einem Anhalteabschnitt kurz die Lokpfeife ertönt.

Motorschaltfrequenz (Anhang 9.1, Zeile 1 bis 8):

Die Beschaffenheit der Motoren und Getriebe der Loks führen zu unterschiedlichen Fahreigenschaften, die durch die Wahl der Motorschaltfrequenz beeinflusst werden können. Normalerweise wird der Motor mit der Schaltfrequenz 20 betrieben. Entsprechend ergeben sich daraus der Motorklang und seine Dreheigenschaften. Alternativ steht die Einstellung der höheren Frequenz 40 zur Verfügung. Welche Frequenz für eine Lok besser ist, muss im Einzelfall getestet werden.

Brems-/Anhalteweg in Anhalteabschnitten (Anhang 9.1, Zeile 9 bis 12):

Mit dem Stufenschalter **Beschleunigung** kann grob die Länge des Bremsweges der Lok bei Einfahrt in einen auf **HALT** geschalteten Gleisabschnitt eingestellt werden. Stufe **0** bedeutet kürzester Weg, Stufe **3** längster. Die Stufen **1** und **2** liegen entsprechend dazwischen. Der Lokdecoder berechnet die Bremsverzögerung so, dass sich unabhängig von der Geschwindigkeit immer in etwa der gleiche Bremsweg ergibt. Die Berechnung des Bremsweges erfolgt allerdings rein theoretisch, sodass sich in der Praxis, abhängig von Loktyp, Motortyp und Getriebetyp sehr unterschiedliche Bremswege ergeben können, die auch bei verschiedenen Geschwindigkeiten variieren. In jedem Fall sollte hier individuell getestet werden.

Elektrische Motorbremse (Anhang 9.1, Zeile 13, 14):

Standardmäßig werden die Motoranschlüsse im ausgeschalteten Zustand kurzgeschlossen, wobei durch das elektrische Abfließen des Magnetfeldes eine Bremswirkung entsteht. Diese Motorbremse kann auch ausgeschaltet werden. Ohne elektrische Bremswirkung erhält man, abhängig von der Beschaffenheit des Lokantriebes, ein längeres Ausrollen der Lok im Fahrbetrieb mit dem Handregler. Der Bremsweg in Halteabschnitten wird dabei nicht beeinflusst.

Verdrahtungsvarianten (Anhang 9.1, Zeile 17 bis 20 und 25 bis 28):

Beim Decodereinbau müssen die Anschlüsse der Loklampen und der Zusatzgeräte **F1** und **F2** in geeigneter Weise verdrahtet werden. Die vorgenommene Verdrahtung muss auch softwaremäßig im Decoder eingestellt werden. Mehrere Möglichkeiten sind in der Tabelle Parameter 2 aufgeführt. Eine ausführliche Beschreibung der Anschlußarten finden Sie im Kapitel 6, Decodereinbau.

Zwei- oder Dreileitersystem (Anhang 9.1, Zeile 21, 22):

Die Zentrale C-Digital wird im Zustand Zweileitersystem ausgeliefert. Beim Zweileitersystem werden die Loks durch die beiden Schienenstränge rechts und links auf dem Gleis mit Fahrstrom versorgt. Entsprechend müssen auch alle Radsätze isoliert sein damit kein Kurzschluss entsteht. Die unterschiedlichen Spannungspotenziale der beiden Schienen, sowie die Fahrtrichtung, kann der Lokdecoder auswerten. So stellt er die tatsächliche Fahrtrichtung fest und erkennt, wenn sich die Lok auf ein rotes Signal zu bewegt.

Beim Dreileitersystem sind meist die beiden Schienenstränge elektrisch verbunden und man verwendet einen dritten Leiter in der Mitte (Mittelleiter) als zweiten Stromanschluß für den Fahrstrom. Die Loks greifen den Strom über die Räder rechts und links und mittels eines Schleifers ab. Das Umdrehen der Lok auf dem Gleis ist daher vom Decoder nicht erkennbar, weil die Stromanschlüsse für den Fahrstrom immer in gleicher Weise durch Schleifer und Räder abgenommen werden. Um dennoch ein Durchfahren roter Signale in Gegenrichtung zu ermöglichen, müssen die Anhalteabschnitte zusätzlich präpariert (siehe Abschnitt 3.4) und die Zentrale auf Dreileitersystem umgestellt werden.

Zusatzfunktion1-Automatik (Anhang 9.1, Zeile 15, 16, ab SW32):

Standardmäßig wird die Zusatzfunktion1 vom Handregler durch den Schalter **F1** ein- bzw. ausgeschalten. Entsprechend reagiert das am Lokdekoder betriebene Zusatzgerät **F1**. Auch bei Automatikfahrt wird der aktuelle Schaltzustand übernommen. In vielen Dampfloks lässt sich ein Rauchgenerator als Zusatzgerät **F1** betreiben. Bei aktivierter Zusatzfunktion1-Automatik wird ein eingeschalteter Rauchgenerator automatisch abgeschalten, wenn sich die Lok vor einem roten Signal im Haltzustand befindet. Zeigt das Signal wieder grün und die Lok bekommt freie Fahrt, so schaltet sich der Rauchgenerator sofort wieder ein. Zwei bis drei Sekunden später kann die Lok wieder losfahren. Die Zusatzfunktion1-Automatik funktioniert bei Standard- und Rangierbetrieb, Doppeltraktion und Automatikfahrt. Voraussetzung dafür ist die Verdrahtung der Gleisanlage mit Haltabschnitten gemäß Abschnitt 3.

Dauerlicht (Anhang 9.1, Zeile 23, 24, ab SW32):

Die am Lokdecoder Professionell angeschlossenen Loklampen (brauner und weißer Draht) wechseln automatisch mit der Fahrtrichtung. Das bedeutet, dass das vordere Licht immer erlischt, wenn das hintere eingeschaltet wird und umgekehrt. Sie können das Ausschalten der Lampe am braunen Decoderdraht durch Aktivieren dieser Einstellung verhindern. Dieser Decoderanschluß führt dann, solange er adressiert ist oder in Automatikfahrt, Dauerspannung mit der Polarität entsprechend der Einstellungen Parameter 2c. Anstelle einer Lampe kann auch ein beliebiges anderes Gerät mit einem Stromverbrauch bis zu 500 mA angeschlossen werden. Der Gesamtstrom im Decoder muß dabei allerdings berücksichtigt werden (s. Abschnitt 6.1).

Beispiel für eine Einstellung der Parameter2 bei einer Lok (s. Tabelle S. 28):

Betrachten wir als Beispiel eine Dampflok mit Lokadresse 38. Die Adresse ist am Handregler eingestellt. Begonnen wird mit der Einstellung der Parameter 2c. Der Betriebsartenschalter steht jetzt in Position **Grundeinstellungen** und der Schalter **F1** zeigt nach unten ("ein"). Sie haben ein Zweileitersystem, die Loklämpchen sind mit einem Pol am Lokgehäuse, mit dem anderen jeweils am Decoder angeschlossen:

- o **Up/Down** betätigen, bis die Stelle am Display **4** anzeigt (s. Zeile 21 bei Parameter 2c, Zweileitersystem)
- o Beschleunigungsschalter drehen, bis die vorderste Stelle am Display **4** anzeigt (s. Zeile 25 bei Parameter 2c, Lampenanschluß am Lokgehäuse)
- o Das Display zeigt nun **4 4 3 8**. Jetzt **Quittung** betätigen, die rote Lampe am Handregler leuchtet, die Daten Parameter 2c wurden übertragen.

Nun die Parameter 2b einstellen mit elektrische Motorbremse AUS. An der Zusatzfunktion **F1** ist der Dampfgenerator angeschlossen, dessen anderer Pol am Lokgehäuse sitzt. An der Zusatzfunktion

F2 ist eine Lokpfeife angeschlossen, deren zweiter Stromanschluß mit dem Decoderplus verbunden ist:

- o **Up/down** betätigen, bis die Stelle am Display **1** anzeigt (siehe Zeile 14 bei Parameter 2b, elektrische Motorbremse AUS)
- o Beschleunigungsschalter drehen, bis die Stelle am Display **6** anzeigt (siehe Zeile 19 bei Parameter 2b, Anschluß ZusFkt1 am Lokgehäuse und ZusFkt2 am Decoderplus)
- o Das Display zeigt nun **6 1 3 8**. Jetzt **Quittung** betätigen, die rote Lampe am Handregler leuchtet erneut, die Daten Parameter 2b wurden übertragen.

Zur Einstellung der Parameter 2a wird jetzt der Schalter **F1** auf "aus" gestellt (zeigt nach oben). Wir wählen die Motorschaltfrequenz 40Hz und "Automatikpfeifen EIN". Es wird ein langer Anhalteweg eingestellt:

- o **Up/down** betätigen, bis die Stelle am Display **6** anzeigt (siehe Zeile 7 bei Parameter 2a, Motorsteuerung 40Hz und Automatik-Pfeifen EIN)
- o Beschleunigungsschalter drehen, bis die Stelle am Display **2** anzeigt (siehe Zeile 11 bei Parameter 2a, langer Anhalteweg)
- o Das Display zeigt nun **2638**. Jetzt **Quittung** betätigen, die rote Lampe am Handregler leuchtet erneut, die Daten Parameter 2a wurden übertragen.


5.7 Nothalt / START

Die Nothalttasten auf den Handreglern sind von der Datenübertragung unabhängig und reagieren sofort direkt auf die Gleisstromversorgung. Der Gleisstrom wird zügig reduziert, sodass alle Züge stehen bleiben. Durch Betätigen der Taste **START** an der Zentrale, wird die Gleisspannung wieder langsam hochgefahren. Züge in Automatikfahrt beginnen von selbst mit der Wiederanfahrt.

6 Einbau des Lok-Decoders

6.1 Beschreibung des Decoders "Professional"

Das Bild unten zeigt schematisch die Vorderseite des Decoders mit den angeschlossenen Drähten. Die Anschlüsse sind kurzschlussfest, sodass die Decoderausgänge automatisch abgeschaltet werden, falls am Lokmotor, an den Lampen, am Dampfgenerator oder an anderen Geräten ein Kurzschluss entsteht. Bitte beachten Sie, dass unüberlegtes, beliebiges Anschließen und Zusammenschalten der Drähte dennoch zum Zerstören elektrischer Bauteile des Decoders führen können. Gleiches gilt, wenn stromführende Teile direkt die Anschlüsse der elektronischen Bauteile auf dem Decoder berühren. Das Lokgehäuse kann Spannungen führen und darf somit auch keine direkten Berührungen zu den elektronischen Bauteilen auf dem Decoder haben.

Die **Stromversorgung des Decoders** mit dem Gleisfahrstrom und der an ihm angeschlossenen Geräte erfolgt durch die beiden Drähte **grau** und **blau** an seiner Rückseite. Hier dürfen maximal 16 V angeschlossen werden. Ein Vertauschen dieser beiden Drähte untereinander ist möglich, allerdings mit Auswirkungen auf die Funktionalität: Erkennen von Blockstellen und roten Signalen sowie Verdrahtung der Loklampen und ggf. diverser Zusatzgeräte. Parallel zu den Anschlüssen grau und blau wird der mitgelieferte Kondensator 4,7nF angeschlossen. Dieser Kondensator kann beispielsweise an die Stellen angelötet werden, wo der Gleisstrom von den Rädern abgenommen wird.

Für den **Anschluß des Motors** dienen die beiden **rosa** Drähte. Diese Anschlüsse führen im eingeschalteten Zustand 14 V Gleichspannung und liefern 0,6 A Dauerstrom und bis zu 1,5 A Spitzenstrom. Durch Vertauschen der Drähte lässt sich die Drehrichtung des Motors ändern.

Die **Loklampen** werden am **weißen** und am **braunen** Draht angeschlossen, wobei der braune Draht fürs Licht vorne und der weiße Draht fürs Licht hinten vorgesehen ist. Für jede Lampe stehen 14 V und 100 mA zur Verfügung. Die Anschlüsse könnten sogar bis zu 500 mA Strom liefern, man beachte jedoch den zulässigen Gesamtstromverbrauch des Decoders von 900 mA (= 0,9 A). Manche Lokhersteller legen eine Verdrahtungsstruktur in ihren Loks fest, die es erforderlich macht, die weißen und braunen Drähte für vorne und hinten zu vertauschen (siehe Anhang 9.2).

Das **Zusatzgerät 1**, beispielsweise ein Dampfgenerator, ein Führerstandslicht, ein Geräuschgenerator oder ähnliches, wird am **grünen** Draht angeschlossen. Die Ausgangsspannung beträgt etwa 14 V, der Strom darf bis zu 300 mA betragen. Das Zusatzgerät wird am Handregler mit dem Schalter **F1** ein- oder ausgeschalten.

Das **Zusatzgerät 2**, beispielsweise eine Lokpfeife oder eine elektrische Kupplung, wird am **gelben** Draht angeschlossen. Die Ausgangsspannung beträgt etwa 14 V, der Strom darf bis zu 300 mA betragen. Das Zusatzgerät wird am Handregler mit der Taste **F2** aktiviert.

Der **rote** Draht am Decoder führt Plus-Spannung (Decoderplus). Er dient als zweiter Anschlußdraht für die **Zusatzgeräte** und/oder die **Loklampen**, sofern keines davon bereits mit dem Lokgehäuse verbunden ist. Die vorgenommene Verdrahtung bzw. Anschlußversion muss im Decoderprogramm eingestellt werden (siehe Abschnitt 5.6).

Der schwarze Draht am Decoder führt Minus-Spannung (Decoderminus). Er dient alternativ zum Decoderplus als zweiter Anschlußdraht für die **Zusatzgeräte** und/oder die **Loklampen**, falls diese mit umgekehrtem Potenzial betrieben werden müssen. Die vorgenommene Verdrahtung bzw. Anschlußversion muss im Decoderprogramm eingestellt werden (siehe Abschnitt 5.6).

Bitte beachten Sie, dass der **Decodergesamtstrom** auf etwa **0,9 A** begrenzt bleibt. Alle angeschlossenen Verbraucher wie Lokmotor, Loklampen, Dampfgenerator, Lokpfeife, Geräuschgenerator usw., dürfen in Summe auf Dauer diesen Wert nicht übersteigen. Ein Überschreiten bis auf maximal **1,5 A** ist für wenige Sekunden möglich. Eine etwas stärkere H0-Lok benötigt für den Motor etwa 0,5 A und für die Lampen etwa 0,1 A. Die übrigen 0,4 A verteilen sich auf die beiden Zusatzgeräte sofern angeschlossen. Beispielsweise benötigt ein Dampfgenerator weniger als 0,2 A, sodass für die zweite Zusatzfunktion mindestens 0,2 A verbleiben würden.

6.2 Einbauhinweise

Brauchbare Hinweise zum Decodereinbau findet man mitunter in der vom Lokhersteller mitgelieferten Betriebsanleitung. Zunächst entfernen Sie das Lokgehäuse (siehe Herstellerangaben) und analysieren die Verdrahtung in der Lok. Kürzen Sie beim ersten Anschließen die Decoderdrähte nicht, denn verschiedene Verdrahtungsprinzipien der Lokhersteller könnten anschließend zu Erkenntnissen führen, die Änderungen erfordern.

Bevor mit der Verdrahtung begonnen wird, muss ein Einbauplatz für den Decoder gefunden werden. In Betrieb genommen, erwärmt sich der Decoder. Man platziert ihn deshalb dort, wo eine Mindestluftzufuhr gewährleistet ist. Es ist nicht immer ganz einfach ausreichend Raum zu finden. Bei ganz beengten Verhältnissen kommt man nicht umhin, Teile des Lokinneren, z. B. aus dem Lokgewicht, zu entfernen. Ist auch das nicht möglich, besteht letztendlich die Möglichkeit den Decoder in einen fest angekuppelten Wagen einzubauen.

Hinweis:

Beim Einbau muss auch an eine ausreichende Befestigung des Decoders gedacht werden. Hierfür kann man doppelseitiges Klebeband oder ähnliches verwenden. Sehr wichtig ist eine ausreichende Isolation der Decoderbauteile zu stromführenden Gehäuseteilen. Hier könnten Berührungen zur Zerstörung des Decoders führen!

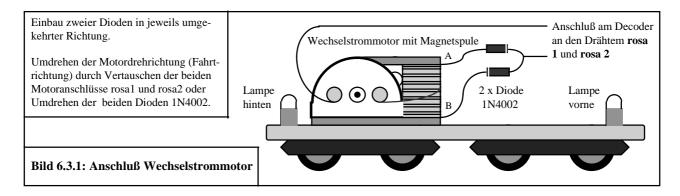
Im Anhang finden Sie verschiedene Verdrahtungsschemen, aus denen Sie einzelne Hinweise für das Anschließen der Decoder entnehmen können.

6.3 Stromversorgung und Motoranschluß

Achtung!

An die Motoren der Loks sind meist Bauteile zur Filterung der Störspannungen, die vom Motor ausgehen, angebracht. Dabei handelt es sich um Kondenstoren oder kleine Spulen oder eine Kombination von beiden, die beim Decodereinbau am Motor beibehalten werden können. Bei manchen Loks sind diese Bauteile jedoch nicht am Motor, sondern an anderer Stelle in der Lok, vielleicht etwas versteckt eingebaut. Diese Bauteile dürfen sich nicht in der Leitung zwischen der Stromabnahme vom Gleis und dem Lokdecoder befinden, da sie die Datensignale für den Decoder abschwächen würden. In dem Fall müssen die Spulen durch eine Drahtbrücke ersetzt und die Kondensatoren ausgebaut werden. Der Decoder enthält selbst an geeigneter Stelle Bauteile zur Filterung von Störspannungen.

Stromanschluß und Gehäusepolarität


Stellen Sie fest, ob das Lokgehäuse mit einer der beiden Radseiten, die den Strom vom Gleis aufnehmen, verbunden ist. Beim Dreileitersystem sind die Räder meist elektrisch mit dem Gehäuse verbunden. Schließen Sie den Decoder mit seinem grauen Draht am Gehäuse bzw. an den entsprechenden Schleifkontakten an. Der blaue Draht wird folglich an den Schleifkontakten der vom Lokgehäuse isolierten Seite angeschlossen. Beim Dreileitersystem verwenden Sie dabei den Schleifer. Falls keine Radseite mit dem Lokgehäuse verbunden ist, verwenden Sie bitte die in Fahrtrichtung linke Radseite für den Anschluß des grauen Drahtes.

Der Motoranschluß

Die Gleichstrom-Lokmotoren besitzen zwei Stromanschlüsse, über die der Motor seinen Strom erhält und an denen meist auch die Kohlen angebracht sind. Die dort angeschlossenen Leitungen <u>müssen</u> vom Motor getrennt werden, sonst könnte der Lokdecoder beschädigt werden. Bei manchen Motoren ist einer der beiden Anschlüsse dennoch fest mit dem Lokgehäuse verbunden, wie z. B. bei älteren Fleischmann-Loks. Hier ist der eine der beiden Anschlüsse unisoliert ins Metall, das elektrisch mit dem Gehäuse verbunden ist, eingepresst. In so einem Fall ist es erforderlich, ein isoliertes Austauschteil beim Hersteller zu bestellen. Alle herkömmlichen Digitalsysteme benötigen isolierte Motoranschlüsse, wofür die Lokhersteller entsprechende Ersatzteile (Motorschild) anbieten.

Bei Wechselstromloks können die elektronischen Umschalterelais ausgebaut werden. Der Gleichstrommotor einer Wechselstromlok wird wie bei Gleichstromloks angeschlossen.

Der Motoranschluß bei Wechselstrommotoren (z. B. wie Märklin)

Der Wechselstrommotor besitzt anstelle eines Dauermagneten eine Magnetspule mit drei Anschlüssen. Der Motor selbst hat, wie beim Gleichstrommotor, zwei Anschlüsse. Der eine davon ist bereits mit dem sog. Mittelanschluß der Magnetspule verbunden. Damit verbleiben drei Anschlüsse für den Betrieb des Motors: Der zweite (andere) Motoranschluß und die beiden verbleibenden Magnetspulenanschlüsse. Der zweite Motoranschluß wird mit einem der beiden rosa Motoranschlüsse des Decoders verbunden. Jede der beiden Magnetspulenanschlüsse erhält eine Diode (z. B. 1N4002, Best.Nr. 16 22 21), wobei die eine in positiver, und die andere in negativer Stromflussrichtung angebracht wird. Beide Dioden werden an der anderen, rosa Decoderleitung angeschlossen. Das Umdrehen der Motordrehrichtung erfolgt durch Vertauschen der beiden Magnetspulenanschlüsse an den Dioden (siehe Bild 6.3.1).

Hinweis zur Verdrahtungsreihenfolge:

Schließen Sie zunächst die Stromversorgung und den Motor an. Dann sollten Sie testen, ob die Lok bei Einfahrt in einen Halteabschnitt (Signal rot) auch stehen bleibt und in Gegenrichtung durchfährt. Vertauschen Sie die beiden Motoranschlüsse, wenn die Lok sich entgegengesetzt verhält. Da jetzt die Fahrtrichtung korrekt festgelegt ist, können die Loklichter vorne und hinten angeschlossen werden. Auch hier könnte eine Vertauschung notwendig sein.

6.4 Anschluß der Loklampen vorne und hinten

Verwendung von Glühbirnchen

Meist sind die Loklampen nur mit einem Anschlußdraht versehen und der andere Pol ist fest mit dem Lokgehäuse verbunden. Entfernen Sie jeweils den Anschlußdraht und bringen Sie dafür an der vorderen Lampe den braunen, an der hinteren den weißen Draht des Decoders an. Falls die Lampen, jeweils mit dem anderen Pol, nicht am Lokgehäuse angeschlossen sind, trennen Sie die vorhandene Verbindung auf und verbinden Sie die Lampe mit der selben Stelle, an der Sie den grauen Draht des Decoders angeschlossen haben. Die Einstellung der Grundeinstellungen Parameter 2c erfolgt dann mit "Lampenanschluß am Lokgehäuse" (s. Abschnitt 5.6). Laut Anhang 9.2 kann es bei Lokverdrahtungsarten einiger Hersteller erforderlich sein, die Drähte braun und weiß für vorne und hinten zu vertauschen.

Verwendung von Leuchtdioden

Die Verwendung von Leuchtdioden (LED) ist nur möglich, wenn diese nicht mit dem Gehäuse bzw. dann dem grauen Decoderdraht verbunden sind. Leuchtdioden werden gemeinsam mit einem Anschluß am Decoderplus (roter Draht) betrieben, der weiße und braune Draht wird dabei wie beim Lämpchen jeweils an den anderen Pol herangeführt. Z. B. erhalten rote Leuchtdioden hinten an der Lok, gemeinsam mit den gelben vorne, den Anschluß am braunen Decoderdraht; die roten Leuchtdioden vorne und die gelben hinten werden am weißen Decoderdraht angeschlossen. Die Verdrahtungsart muss im Decoderprogramm passend eingestellt werden (siehe Abschnitt 5.6).

Beachten Sie bitte, dass Leuchtdioden nur mit einem Vorwiderstand betrieben werden dürfen, sonst werden sie durch zu hohe Ströme zerstört.

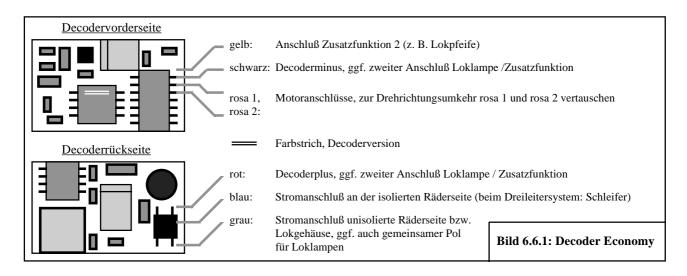
Sollte in der Lok die Verdrahtung der Leuchtdioden gerade in umgekehrter Polarität vorliegen (bei LED kann der Strom nur in einer Richtung fließen), müssten sie jetzt umgekehrt eingebaut werden. Dieser Umbau kann entfallen, wenn Sie als gemeinsamen Pol für die Leuchtdioden anstelle des Decoderplus (roter Draht) den Decoderminus verwenden. Als Decoderminus steht der schwarze Draht des Decoders zur Verfügung. Entsprechend muss die Verdrahtungsart im Decoderprogramm eingestellt werden (siehe Abschnitt 5.6).

6.5 Anschluß von Zusatzgeräten, Funktion F1, F2

Dampfgenerator, Anschluß Funktion 1

Der Dampfgenerator ist i. d. R. ins Lokgehäuse eingebaut und mit diesem elektrisch verbunden. Der zweite Stromanschluß erfolgt durch eine Kontaktlasche oder einen Draht. Um den Betrieb vom Handregler aus (F1) zu ermöglichen, muss dieser Anschluß vom Dampfgenerator getrennt werden. Am Dampfgenerator wird dafür der grüne Decoderdraht angeschlossen. Beachten Sie bitte , dass der bisherige Dampfgeneratoranschluß gut isoliert bleibt, damit keine Kurzschlüsse oder Fehlfunktionen des Decoderanschlußes hervorgerufen werden.

Anschluß Funktion 2


Der Anschluß Funktion 2, gelber Draht des Decoders, wird zusammen mit dem roten Draht (Decoderplus) betrieben. Daran kann ein Zusatzgerät angeschlossen werden, das per am Handregler Tastendruck **F2** betätigt wird. Sie können einen Piezo-Tongeber mit eingebauter Elektronik als Lokpfeife verwenden. Beachten Sie bitte dabei die Polarität, indem Sie den Decoderplus am Pluspol des Piezo-Tongebers anschließen. Der Anschluß einer elektrischen Kupplung ist ebenfalls möglich, wenn Sie den zweiten Anschluß der Kupplung isolieren und mit dem Decoderplus verbinden.

Wie bei den Leuchtdioden (siehe oben) ist auch hier ein Betrieb am Decoderminus möglich. Entsprechend ist auf die Polaritäten zu achten und die Einstellung im Decoderprogramm (siehe Abschnitt 5.6) vorzunehmen.

6.6 Beschreibung des Lokdecoders "Economy"

Der Lokdecoder "Economy" wurde als preiswerte Alternative, unter Einsparung einiger nicht unbedingt notwendiger Finessen entwickelt. So muss auf die beiden Anschlüsse für die Loklampen vorne und hinten und auf die Anschlußmöglichkeit der Zusatzfunktion 1 verzichtet werden. Es verbleiben nur mehr der Betrieb des Lokmotors und der Zusatzfunktion 2 am Decoder.

Mit diesen Einsparungen ergibt sich zwangsläufig auch ein niedrigerer Stromverbrauch. Dieser wurde unter Verwendung kleinerer Bauteile für den Dauerbetrieb auf maximal **0,5** A festgelegt. Ein nicht allzu starker H0 Lokmotor verbraucht im Dauerbetrieb bis etwa 0,4 A, sodass für den Anschluß einer Zusatzfunktion noch etwa 0,1 A verbleiben. Der Vorteil dieser Einsparungen liegt aber auch in den etwa 30% geringeren Abmessungen des "Economy"-Decoders. Durch einen kleinen Umbau konnte im Testlabor der Einbau des Decoders in eine H0 Köf-Lok von Piko vorgenommen werden.

Das Bild 6.6.1 zeigt schematisch die Vorder- und Rückseite des Decoders mit den angeschlossenen Drähten. Die Anschlüsse sind kurzschlussfest, sodass die Decoderausgänge automatisch abgeschaltet werden, falls am Lokmotor oder am Zusatzgeräten F2 ein Kurzschluss entsteht. Bitte beachten Sie, dass unüberlegtes, beliebiges Anschließen und Zusammenschalten der Drähte dennoch zum Zerstören elektrischer Bauteile des Decoders führen können. Gleiches gilt, wenn stromführende Teile direkt die Anschlüsse der elektronischen Bauteile auf dem Decoder berühren. Das Lokgehäuse kann Spannungen führen und darf somit auch keine direkten Berührungen zu den elektronischen Bauteilen auf dem Decoder haben.

Die **Stromversorgung des Decoders** mit dem Gleisfahrstrom und der an ihm angeschlossenen Geräte erfolgt durch die beiden Drähte **grau** und **blau** an seiner Rückseite. Hier dürfen maximal 16 V angeschlossen werden. Ein Vertauschen dieser beiden Drähte untereinander ist möglich. Parallel zu den Anschlüssen grau und blau wird der mitgelieferte Kondensator 4,7nF angeschlossen. Dieser Kondensator kann beispielsweise an die Stellen angelötet werden, wo der Gleisstrom von den Rädern abgenommen wird.

Für den **Anschluß des Motors** dienen die beiden **rosa** Drähte. Diese Anschlüsse führen im eingeschalteten Zustand 14 V Gleichspannung und liefern max. 0,5 A Dauerstrom und bis zu 1A Spitzenstrom. Durch Vertauschen der Drähte lässt sich die Drehrichtung des Motors ändern.

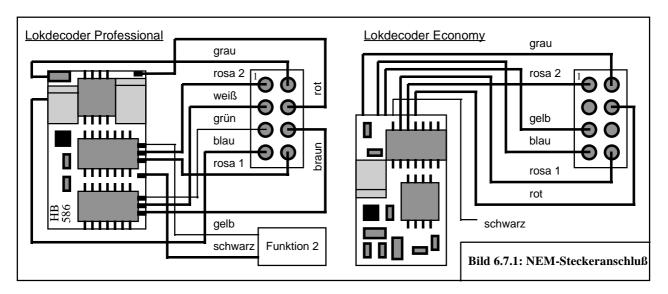
Das **Zusatzgerät 2**, beispielsweise eine Lokpfeife oder eine elektrische Kupplung, wird am **gelben** Draht angeschlossen. Die Ausgangsspannung beträgt etwa 14 V, der Strom darf bis zu 100 mA betragen. Das Zusatzgerät wird am Handregler mit der Taste **F2** aktiviert.

Der **rote** Draht am Decoder führt Plus-Spannung (Decoderplus). Er dient als zweiter Anschlußdraht für das **Zusatzgeräte 2**. Die vorgenommene Verdrahtung bzw. Anschlußversion muss im Decoderprogramm eingestellt werden (siehe Abschnitt 5.6).

Der schwarze Draht am Decoder führt Minus-Spannung (Decoderminus). Er dient alternativ zum Decoderplus als zweiter Anschlußdraht für das **Zusatzgeräte 2**. Die vorgenommene Verdrahtung bzw. Anschlußversion muss im Decoderprogramm eingestellt werden (siehe Abschnitt 5.6).

Die Hinweise in den Abschnitten 6.2, 6.3, und 6.5, <u>Anschluß Funktion 2</u> sind sowohl für den Lokdecoder "Professional" als auch für den "Economy" zutreffend.

Die Programmierung erfolgt in exakt der selben Weise wie beim Decoder "Professional". Dabei können die Programmeinstellungen für die Loklampen und den Anschluß Zusatzfunktion 1 mit beliebiger Werten erfolgen. Sie haben keine Auswirkungen auf die Funktionalität des "Economy" Decoders.


Hinweis:

Mit der Zusatzfunktion 2 lässt sich die Lokbeleuchtung betreiben, wenn jeweils beide Pole der Lämpchen von den Anschlußstellen in der Lok getrennt und mit den Decoderanschlüssen Funktion 2 und Decoderplus verbunden werden. Bei den Decoder-Grundeinstellungen muss die "Tastfunktion" (s. Bedienungsanleitung Abschnitt 5.6) aktiviert werden. Ein automatischer Lichtwechsel mit der Fahrtrichtung ist jedoch leider nicht möglich. Sollten während des Fahrens kurzzeitige Fahrstromunterbrechungen wegen Kontaktproblemen oder Verschmutzungen an Rädern oder Gleis auftreten, wird eine ggf. mit Tastfunktion eingeschaltete Zusatzfunktion 2 wieder abgeschaltet. Dann ist ein erneutes Einschalten durch Betätigen der F2-Taste am Handregler erforderlich.

6.7 Anschluß der Lokdecoder am NEM-Stecker

Bei den meisten Loks jüngerer Herstellung ist eine achtpolige Steckmöglichkeit vorgesehen, dem sogenannten NEM-Stecker, mit der auf einfache Weise ein Umstecken zwischen Analog- und Digitalbetrieb möglich ist. Das Umstecken auf Digitalbetrieb erfolgt durch Entfernen des werksseitig eingesteckten Brückensteckers. Dieser Brückenstecker bewirkt eine Verbindung des Gleisstromes mit dem Motor und den Loklampen.

Die Brückenstecker sind je nach Hersteller unterschiedlich ausgeführt. Die einfache Version besteht nur aus kurzen Drähten, die durch ein Kunststoffplättchen gesteckt sind. Diese Art eignet sich nicht zur Verwendung als Stecker für den Lokdecoder.

Eine bessere Ausführung besteht aus einer kleinen Leiterplatte, an der man die verbundenen Steckanschlüsse durch Durchritzen der Leiterbahn oder durch Ablöten der Brücken trennen kann. An den dann voneinander isolierten Steckanschlüssen können die Drähte des Lokdecoders angelötet werden. Das Bild 6.7.1 zeigt die Anschaltung der Lokdecoder "Professional" und "Economy" am achtpoligen NEM-Stecker.

Beim Anschluß des Lokdecoders "Professional" wurde unterstellt, dass die Loklampen als gemeinsamen Gegenpol den Decoderplus, also positive Spannung benötigen (roter Draht). Entsprechend ist bei der Programmierung gemäß Zeile 27 in der Tabelle 9.1 Parameter 2 Einstellung "Lampenanschluß am Decoderplus" einzustellen. Alternativ können die Loklampen auch den Decoderminus als gemeinsamen Pol führen. Dies könnte bei Leuchtdioden sogar zwingend erforderlich sein, wenn sie so verdrahtet sind, dass sie nicht den Pluspol, sondern den Minuspol als gemeinsamen Anschluß benötigen. In dem Fall muss der schwarze Decoderdraht anstelle des roten am NEM-Stecker angeschlossen und bei den Parameter 2c "Lampenanschluß am Decoderminus" eingestellt werden.

Der grüne Draht für die Zusatzfunktion 1 ist an den Anschluß des NEM-Steckers herangeführt, der meist nicht verdrahtet ist. Falls ein Gerät als Zusatzfunktion 1 betrieben werden soll, kann dieser Anschluß als Steckverbindung verwendet werden. Je nach Verdrahtung in der Lok kann die Zusatzfuktion mit dem Gegenpol Lokgehäuse (grauer Decoderdraht) oder mit dem gemeinsamen Gegenpol der Loklampen (roter bzw. schwarzer Decoderdraht) bei entsprechender Parameter 2b Einstellung betrieben werden. Da beim Decoder "Economy" nur eine Anschaltemöglichkeit für die Zusatzfunktion 2 besteht, wird hier anstelle des nicht vorhandenen grünen Drahtes der gelbe am NEM-Stecker angeschlossen.

Der Anschluß der Zusatzfunktion 2 wird unter Verwendung des gelben Decoderdrahtes frei verdrahtet. Als Gegenpol kann entweder der schwarze Draht (Decoderminus) oder der rote (Decoderplus) verwendet werden. Die Programmierung der Parameter 2b muss entsprechend vorgenommen werden.

Das Einstellen der Parameter 2 ist im Abschnitt 5.6 beschrieben.

Der beim Economy Decoder mitgelieferte Kondensator 4,7nF kann zusätzlich am NEM-Stecker am die Anschlüsse grauer und blauer Decoderdraht, oder an anderer Stelle, an der die Gleisspannung in der Lok herangeführt ist, angelötet werden. Er verbessert den Empfang der Datensignale. Beim Decoder Professional ist er bereits in der Schaltung integriert.

6.8 Beschreibung des Lokdecoders für Loks der Spurweite N (in Vorbereitung)

Um den Lokdecoder in seinen Abmessungen möglichst klein werden zu lassen, hat man sich auf darauf beschränkt, nur den Betrieb des Motors vorzusehen. Der maximale Strom wurde dabei auf 400 mA festgelegt. Alle Einstellungen erfolgen analog wie beim Decoder "Professional" oder "Economy". Die Funktionalität des N-Decoders ist identisch den anderen Decodern, wobei alle Einstellungen, die zu Loklampen oder Zusatzfunktionen gehören, ohne Bedeutung sind. Auch die Verdrahtung findet in entsprechend gleicher Weise statt.

Die **Stromversorgung des N-Decoders** mit dem Gleisfahrstrom erfolgt durch die beiden Drähte **grau** und **blau**. Hier dürfen **maximal 15 V** angeschlossen werden. Ein Vertauschen dieser beiden Drähte untereinander ist möglich. Parallel zu den Anschlüssen grau und blau wird der mitgelieferte Kondensator 4,7nF angeschlossen. Dieser Kondensator kann beispielsweise an die Stellen angelötet werden, wo der Gleisstrom von den Rädern abgenommen wird.

Für den **Anschluß des Motors** dienen die beiden **rosa** Drähte. Diese Anschlüsse führen im eingeschalteten Zustand etwa 14 V Gleichspannung und liefern max. 0,4 A Dauerstrom und bis zu 1A Spitzenstrom. Durch Vertauschen der Drähte lässt sich die Drehrichtung des Motors ändern.

Die Hinweise zum Decodereinbau in den Abschitten 6.2 und 6.3 gelten für den N-Decoder entsprechend.

7 Technische Daten

7.1 Zusammenfassung der Leistungsmerkmale

Anzahl Handregler 1 bis 6

Anzahl Lokadressen 61

Motor: Fahrstufen 30 vorwärts, 30 rückwärts

Motorsteuerung 20Hz oder 40Hz Elektrische Motorbremse EIN oder AUS

Zusatzfunktionen 2 (F1 und F2)

Verdrahtungsvariationen: Zusatzfunktion F1 2

Zusatzfunktion F2 2 Loklampen 4

Anfahr- und Bremsverzögerung 4 Stufen

Einstellbarer Anhalteweg bei rotem Signal 4 Längen je Lok

Automatikfahrt für jede Lok oder Doppeltraktion aktivierbar

Doppeltraktion mit zwei Loks vom Handregler aus steuerbar

Spezialeffekte: Tastfunktion bei F2

Automatik-Pfeifen Dauerlicht (ab SW32) F1-Automatik (ab SW32)

Boosterbetrieb für große Anlagen (ab ca. 6 gleichzeitig fahrende Loks je nach Zugbeleuchtung)

Umschaltbar von Zweileiter auf Dreileitersystem

7.2 Anschluß- und Leistungsdaten

Netztrafo: prim.: 220V 52W 50Hz, sek.: 18V 2,9A

Zentrale: Klemmen AC Eingang 17V bis 24V AC

Klemme GND gemeinsamer Ausgang für STR, UZ, GUZ Klemme STR Ausgang 15V max. 2,7A DC kurzschlussfest

Datenstrom 2kHz, Trägerfrequenz 450kHz 0,4Vss

Klemme UZ Ausgang 15V max. 2,7A DC kurzschlussfest

Datenstrom 2kHz, Trägerfrequenz 450kHz 0,4Vss

Klemme GUZ Ausgang 15V max. 2,7A DC kurzschlussfest Datenstrom 2kHz, Trägerfrequenz 450kHz 0,4Vss

Die Ausgänge STR, UZ und GUZ leisten in Summe max. 2,7A Dauerstrom

Buchse Handregler fünfpolige Diodenbuchse

1 Ausgang Daten (SCL)

2 GND

3 Ausgang/Eingang Daten (SDA)

4 Eingang Nothalt (aktiv an GND schalten)

5 VCC

Buchse Booster neunpolige SubD Buchse

1 Ausgang Start

2 Ausgang Träger 450kHz 0,4Vss

3 Ausgang Datenstrom GUZ

4 Ausgang Datenstrom UZ

5 Ausgang Datenstrom STR

6 GND

7 Eingang Starttaste (aktiv an GND schalten)

8 VCC

9 Ausgang Datenstrom Trigger

<u>Booster:</u> AC, COM, STR, UZ, GUZ siehe Zentrale

neunpolige SubD-Buchsen je als Eingangs und Ausgangsbuchse

(1:1 Verbindungskabel)

Buchse Zentrale neunpoliger SubD Stecker

1 Eingang Start

Eingang Träger 450 kHz, 0,4 Vss

3 Eingang Datenstrom GUZ

4 Eingang Datenstrom UZ

5 Eingang Datenstrom STR

6 GND

7 Ausgang Start-Taste (führt aktiv GND)

8 VCC

9 Datenstrom Trigger (nur für Messzwecke)

Buchse Booster neunpolige SubD Buchse (Belegung siehe Zentrale)

<u>Lokdecoder</u>, <u>Professionell</u>":

Maße (mm): 14 x 25 x 7 Eingangsspannung 12V bis 18V Stromaufnahme max. 1,5A

Ausgänge (bei 15V Eingangsspannung entsprechend 15V Gleisspannung):

Motor 13,4V max. 1,5A Spitzenstrom und 0,6A Dauerstrom

Lampen je 13,4V bis 14V max. je 0,6A F1-Anschluß 13,4V bis 14V max. 0,6A F2-Anschluß 13,4V bis 14V max. 0,6A Der Gesamtstrom an den Decoderausgängen darf auf Dauer 0,9A nicht übersteigen, kurzzeitig sind 1,5A möglich (siehe Anschnit 6.1).

Lokdecoder "Economy":

Maße (mm): 12 x 22 x 7 Eingangsspannung 12V bis 18V Stromaufnahme max. 1,0A

Ausgänge (bei 15V Eingangsspannung entsprechend 15V Gleisspannung):

Motor 13,4V max. 1,0A Spitzenstrom und 0,4A Dauerstrom

F2-Anschluß 13,4V bis 14V max. 0,2A

Der Gesamtstrom an den Decoderausgängen darf auf Dauer 0,5A nicht übersteigen, kurzzeitig sind 1,0A möglich (siehe Anschnit 6.6).

<u>Lokdecoder "N</u>" (in Vorbereitung):

Maße (mm): 10,5 x 20 x 6 Eingangsspannung 12V bis 15V Stromaufnahme max. 0,4A

Ausgänge (bei 15V Eingangsspannung entsprechend 15V Gleisspannung):

Motor 13,4V max. 0,8A Spitzenstrom und 0,4A Dauerstrom

Der Gesamtstrom an den Decoderausgängen darf auf Dauer 0,4A nicht übersteigen, kurzzeitig sind 0,8A möglich (siehe Anschnit 6.8).

Softwareversion Decoder:

Roter Strich SW31, Okt. 2000 (gelbes Kreuz auf PIC)

Ausgangsversion

Blauer Strich SW32, Okt. 2001

F1-Automatik, Dauerlicht

Kein Automatikfahrt-RESET bei RESET Zentrale

8 Stichwortverzeichnis

	Kapitel		Kapitel
Anfahrbeschleunigung	5.1	Kurzschluss	6.1
Anfahrverzögerung	5.1	Leuchtdioden	6.4
Anhalteabschnitt	3.2	Leistungserhöhung	3.6
Anhaltestrom	3.3	Lichtsignal	3.3
Anhalteweg	5.6	Lokadresse	4.4
Anschlußarten	5.6	Loklampen	5.6
Aufmerksamkeitston	4.2	Loklicht	6.4
Auslieferungszustand	4.3	Lokpfeife	6.5
Automatik	5.4	Luftzirkulation	6.2
Automatikfahrt	5.4	Magnetspule	6.3
Automatik-Pfeifen	5.6	Maximalgeschwindigkeit	5.2
Bedienelemente	5.6	Mittelleiter	3.4
Befestigung	6.2	Motoranschluß	6.3
Beispiele	5.6	Motorbremse	5.6
Betriebsart	4.2	Motorklang	5.6
Blockstelle	3.2	Motorschaltfrequenz	5.6
Booster	4.6	NEM-Stecker	6.7
Boosteranschluß	3.6	Parameter 2	5.6
Boosterfunktionen	4.6	Parkmodus	4.5
Blockstellenmodul	3.3	Piepton/Pfeife	4.2
Bremsverzögerung	5.6	Piezo-Tongeber	6.5
Bremsweg	5.6	Plastikstecker	4.3
Bremswirkung	5.6	Quittung	4.2
COM	3.2	Radsätze	5.6
Dampfgenerator	6.5	Rangieren/Rangierfahrt	5.2
Dauerlicht	5.6	Rauchgeneratorautomatik	5.6
Decoder	6.1	Reaktivierung	4.1
Decoder Professional	6.1	Reset	4.1
Decoder Economy	6.6	Richtungssystematik	3.2
Decoderanschlüsse	6.1	Schienensteckverbinder	3.2
Decodereinstellungen	5.6	Schienenstränge	3.2
Decodergesamtstrom	6.1	Schleifer	6.3
Decoderminus	6.1	Senden	4.1
Decoderplus	6.1	Signalgegendurchfahrt	3.3
Displayblinken	5.2	Blockstellenmodul	3.3
Doppeltraktion	5.3	Standard	5.1
Dreifachklemme	3.3	Steckklemme	3.2
Dreileitersystem	3.4	Stellpult	3.3
Durchfahren	5.2	STR	3.2
Einbauplatz	6.2	Strecke	3.2
elektrische Kupplung	6.5	Streckensignal	3.3
Endabschaltung	3.3	Streckenstrom	3.3
Erstadresse	4.4	Stromausfall	4.4
Erstinbetriebnahme	4	Stromflussrichtung	6.3
Fahreigenschaften	5.6	Stromunterbrechung	5.4
Funktion	5.5	Tastfunktion	5.6
Funktion 1 - Automatik	5.6	Tongeber	6.5
GD	3.4	Umbau	3.3
Gegenverkehr	3.2	Unterbrechungen	4
Gehäusepolarität	6.3	UZ	3.2
Geräuschmodul	2	Verdrahtungsvarianten	5.6
Gleissystem	5.6	Verkehr	3.2
Gleistrennstelle	3.2	Vorwiderstand	3.3
GUZ	3.2	Zerstören (Decoder)	6.1
HALT	3.4	Zusatzfunktion	5.5
Handreglernummer	4.2	Zusatzgerät	6.5
Isolation (Lokgehäuse)	6.1	Zweifachklemme	2
(20.190.1200)	~. .		-

9 Anhang

- 9.1 Parameter 2 Einstellung
- 9.2 Lok-Funktionstest und Fehlertabelle
- 9.3 Tabellen zum Notieren der Grundeinstellungen der Loks
- 9.4 Verdrahtungsschemen Decodereinbau
- 9.5 Diagramme der Verkabelungsreichweiten

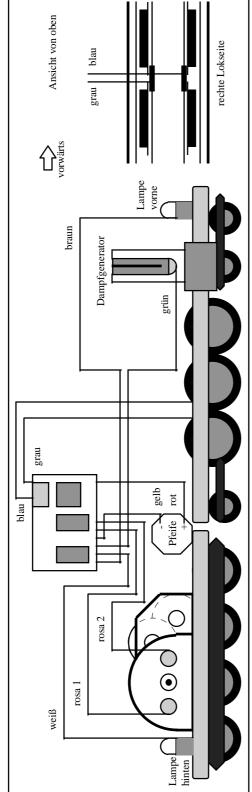
Vierstelliges Display

em33p	8	8	8	8	Einstellung					
		0			Motorsteuerung 20Hz			1		
	siehe	1			Motorsteuerung 20Hz	und	Tastfunktion EIN	2		
	unten	2			Motorsteuerung 20Hz	und	Automatik-Pfeifen EIN	3		
Parame-	Anhalte-	3	L	 ok	Motorsteuerung 20Hz	und	Tastfunktion EIN	4		
ter 2a	weg-	4	Adr	esse	Motorsteuerung 40Hz			5		
	Länge	5			Motorsteuerung 40Hz	Motorsteuerung 40Hz und Tastfunktion El				
	0 bis 3	6			Motorsteuerung 40Hz	und	Automatik-Pfeifen EIN	7		
Schalter		7			Motorsteuerung 40Hz	und	Tastfunktion EIN	8		
F1	0	siehe			kurzer Anhalteweg			9		
AUS	1	oben	L	 ok	mittlerer Anhalteweg			10		
	2	0 bis 7	Adr	esse	langer Anhalteweg			11		
	3				Ausrollen			12		
		0			elektrische Motorbremse			13		
Parame-	siehe	1	L	 ok	EIN elektrische Motorbremse	elektrische Motorbremse .		14		
ter 2b	unten	2		esse	AUS elektrische Motorbremse	und	Zusatzfunktion 1 Automatik	15		
2.0	4 bis 7	3			EIN elektrische Motorbremse		EIN Zusatzfunktion 1 Automatik			
0.1.11					AUS		EIN			
Schalter	4	siehe			Anschluß ZusFkt1 am Lokgehäuse		Anschluß ZusFkt2 am De- koderminus	17		
F1	5	oben	L	ok	Anschluß ZusFkt1 am De- koderplus		Anschluß ZusFkt2 am De- koderminus	18		
EIN	6	0 bis 3	Adr	esse	Anschluß ZusFkt1 am Lokgehäuse	und	Anschluß ZusFkt2 am De- koderplus	19		
_	7				Anschluß ZusFkt1 am De- koderplus	und	Anschluß ZusFkt2 am De- koderplus	20		
		4			Zweileitersystem			21		
Parame-	siehe	5	L	ok	Dreileitersystem			22		
ter 2c	unten	6		esse	Zweileitersystem	und	Dauerlicht EIN	23		
20	4 bis 7	7	7.01		Dreileitersystem	und	Dauerlicht EIN	24		
Schalter	4	siehe			Lampenanschluß am		Dadomont Env	25		
					Lokgehäuse	•	•			
F1	5	oben		ok	Lampenanschluß am Deko- derminus	•		26		
EIN	6	4 bis 7	Adr	esse	Lampenanschluß am Deko- derplus	•		27		
	7				Lampenanschlüsse umge- kehrt gepolt		•	28		

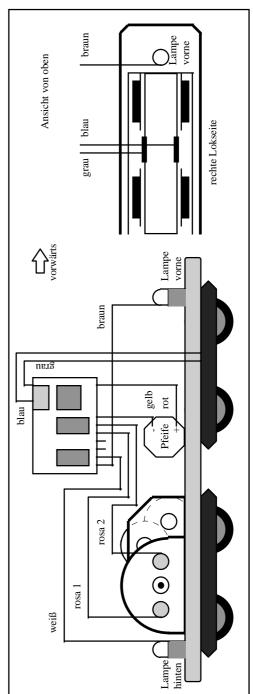
Test		Ergebnis	mögliche Ursache
Handregler bedienen	Lok reagiert nicht		Lokadresse prüfen, Stromzuführung prüfen, Decoderverdrahtung prüfen
Vorwärtsfahrt> Rückwärtsfahrt>	Licht vorne Licht hinten	Anhalten vor rotem Signal und Durchfahrt in Gegenrichtung	Verdrahtung korrekt, Grundeinstellungen Parameter 2c (Zeile 25 bis 28) korrekt
Vorwärtsfahrt> Rückwärtsfahrt>	Licht hinten Licht vorne	Anhalten in Gegenrichtung und Durchfahrt bei rotem Signal	Motoranschlüsse vertauschen (Zweileitersystem) oder Anschlüsse der Magnetspule an den beiden Dioden vertauschen (Dreileitersystem)
Vorwärtsfahrt> Rückwärtsfahrt>	Licht hinten Licht vorne	Anhalten vor rotem Signal und Durchfahrt in Gegenrichtung	Lichtanschlüsse vorne und hinten vertauschen
Vorwärtsfahrt> Rückwärtsfahrt>	Licht vorne Licht hinten	Anhalten in Gegenrichtung und Durchfahrt bei rotem Signal	Lichtanschlüsse vorne und hinten vertauschen und Motoranschlüsse vertauschen (Zweileiter- system) bzw. Anschlüsse der Magnetspule an den beiden Dioden vertauschen (Dreileitersy- stem)

Vorwärtsfahrt oder Rückwärtsfahrt	Licht leuchtet nicht		Grundeinstellungen Parameter 2c, an Zeile 25, 26 oder 27 überprüfen
Vorwärtsfahrt oder Rückwärtsfahrt	Licht leuchtet, aber	Licht leuchtet nicht nach Umdrehen der Lok	Grundeinstellungen Parameter 2c, an Zeile 25, 26 oder 27 überprüfen
Vorwärtsfahrt oder Rückwärtsfahrt	Licht leuchtet, aber	Licht leuchtet nicht nach Umdrehen der Lok (ein Pol der Lampen ist am Gehäu- se angeschlossen)	, ,

Schalter F1	Rauchgenerator	funktioniert nicht	Grundeinstellungen Parameter 2b, an Zeile 17, 19 oder 18, 20 überprüfen, oder Rauchgenerator defekt
Schalter F1	Rauchgenerator funktioniert, aber	Rauchgenerator funktioniert nicht nach Umdrehen der Lok	Grundeinstellungen Parameter 2b, an Zeile 17, 19 oder 18, 20 überprüfen, oder Dampfgenera- tor defekt, oder Gehäusepolarität nicht gleich dem grauen Decoderanschluß
Taste F2	Pfeife reagiert nicht		Grundeinstellungen Parameter 2b, an Zeile 17, 18 oder 19, 20 überprüfen, oder Pfeife (Piezo) defekt


9.3 Tabelle zum Notieren der Grundeinstellungen der Loks **Blatt:** Anhang

					A	nha	ltew	eg	Fı	ınkt	. 1	Fu	ınkt	ion	2	M	otoı		Laı	mpe	enan	sch	luß		Dis	playw	ert
	Hersteller	Baureihe	Loknummer	Lokadresse	kurz	mittel	lang	ausrollen	F1-Automatik	Lokgehäuse	Decoderplus	Tastfunktion	Automatikpfeife	Decoderminus	Decoderplus	20 Hz Steuerung	40 Hz Steuerung	el. Motorbremse	Lokgehäuse	Decoderplus	Decoderminus	gegengepolt	Dauerlicht	Dreileitersystem	2a	2b	2c
1																											
2																											
3																											
4																											
5																											
6																											
7																											
8																											
9																											
10																											
11																											
12																											
13																											
14																											
15																											

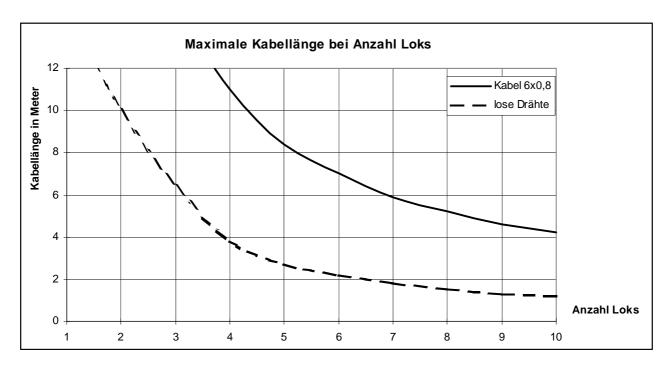

					A	Anhalteweg			Funkt. 1			Fu	ınkt	ion	2	M	oto	r	Lampenanschluß						Displaywert		
	Hersteller	Baureihe	Loknummer	Lokadresse	kurz	mittel	lang	ausrollen	F1-Automatik	Lokgehäuse	Decoderplus	Tastfunktion	Automatikpfeife	Decoderminus	Decoderplus	20 Hz Steuerung	40 Hz Steuerung	el. Motorbremse	Lokgehäuse	Decoderplus	Decoderminus	gegengepolt	Dauerlicht	Dreileitersystem	2a	2b	2c
16																											
17																											
18																											
19																											
20																											
21																											
22																											
23																											
24																											
25																											
26																											
27																											
28																											
29																											
30																											

Conrad-Digital

Verdrahtungsschemen Dekodereinbau

Dampflok Zweileitersystem, Lampen und Dampfgenerator elektrisch mit dem Lokgehäuse verbunden, Lokpfeife als Zusatzgerät 2

Ellok Zweileitersystem, Lampen elektrisch mit dem Lokgehäuse verbunden, Lokpfeife als Zusatzgerät 2


9.5 Diagramme der Verkabelungsreichweiten

Hier finden Sie Angaben zur Dimensionierung größerer Anlagen, um eine sichere Versorgung der Datenströme in allen Anlagenteilen zu erreichen. Aus dem Diagramm lassen sich näherungsweise die maximalen Längen der Anschlußleitungen vom fünfpoligen Klemmstecker der Zentrale bzw. des Boosters bis zu den Anschlußstellen der Anlage ablesen. Entsprechende Hinweise zur Verdrahtung enthält auch Abschnitt 3.2 und 3.7. Für eine gute Stromversorgung soll an mehreren Stellen der Anlage Gleisstromanschlüsse vorgesehen werden. Zur Ermittlung der maximal möglichen Länge legt man zuerst fest, wie viele Loks an der vom Klemmstecker entferntesten Anlagenstelle gleichzeitig betrieben werden sollen. Je nach gewählter Verdrahtungsart gilt die entsprechende Kurve "Kabel 6x0,8" oder "lose Drähte" im Bild.

Soll beispielsweise eine Anlage mit der Abmessung von 4 x 2 Meter versorgt werden wobei die Zentrale etwa in der Mitte einer Anlagenlängsseite platziert ist, verliefen wohl zwei Leitungen von der Zentrale aus gesehen zur rechten und zur linken Anlagenhälfte. Diese Leitungen versorgen jeweils Streckenteile und Anhalteabschnitte und fürhren dann weiter zu den nächst entfernten Streckenteilen und Anhalteabschnitten. Ein Bahnbetriebswerk, links hinten auf dieser Beispielanlage könnte dann mit etwa drei Meter der entfernteste Einspeisepunkt der linken Leitung sein. Werden auf diesem BW gleichzeitig vier Loks betrieben so genügt eine Verkabelung mit einzelnen, lose verlegten Drähten, denn laut Diagramm darf bei vier Loks die Anschlußlänge bis etwa 3,5 Meter betragen. Bei sechs Loks käme man nur bis knapp über 2 Meter. Abhilfe schafft dann die Verwendung eines Kabels 6x0,8 anstelle der losen Verdrahtung, denn damit sind Längen bis zu 7 Meter möglich.

Durch die Verdrahtungsart mittels zweier Versorgungsleitungen, eine zum rechten und eine zum linken Anlagenteil, ließe sich in dem Beispiel eine Anlage von bis zu 10 Meter Länge versorgen. Für größere Anlagen sind Booster einzusetzen (Abschnitt 3.6), für die selbst wiederum die hier beschriebenen Reichweiten gelten.

Eine bestehende Verdrahtung braucht nur an den Stellen durch Kabel ausgetauscht zu werden, bei denen die Entfernung für eine lose Draht Verkabelung zu groß sind.

